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ABSTRACT

In online platforms like eBay, sponsored search advertising has

become instrumental for businesses aiming for enhanced visibility.

However, in automated ad auctions, the sellers (ad campaigns) run

the risk of exhausting their budgets prematurely in the absence of

proper pacing strategies. In response to this, online platforms have

been prompted to employ budget pacing strategies to maintain con-

sistent spending patterns for their sellers. While numerous budget

pacing strategies have been introduced, they predominantly stem

from either empirical or theoretical perspectives, often functioning

in isolation. This paper aims to bridge this gap by investigating

the performance of a theoretically inspired optimization-based bid

shading method, AdaptivePacing, within eBay’s sponsored search

environment and proposing variants of the algorithm tailored to

real-world environments. Our findings highlight the benefits of

applying theoretical pacing approaches in practical contexts. Specif-

ically, the optimization-based AdaptivePacing method offers the

platform flexible control over campaign spending patterns, accounts

for business constraints, and suggests tailored strategies for distinct

advertisers. Furthermore, when evaluating AdaptivePacing along-
side established empirical methods, we demonstrate its practical

effectiveness and pinpoint areas for further refinement.

CCS CONCEPTS

• Information systems→ Sponsored search advertising; Com-
putational advertising; • Applied computing → Electronic com-
merce.
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1 INTRODUCTION

Onlinemarketplaces such as eBay have transformed how businesses

and consumers interact, and with the industry’s consistent growth,

it will reach $6.3 trillion globally (including over $1.1 trillion in the

US alone)
1
. As a leading marketplace with over 650 million monthly

visits, eBay serves as a key platform for businesses to reach new

audiences. Moreover, sponsored search advertising, an $84 billion

industry with current annual growth rate of 7.8%
2
, is a critical

tool for eBay sellers. By bidding on preferred slots or rankings,

sellers can optimize visibility and drive sales of their products on a

massive scale the marketplace provides. Impressions on search ads

platforms are sold via automated ad auctions, where sellers specify

their budget constraints, organize items into groups for which they

specify targeting, as well as set maximum bids for each search

keyword. Given this information, the platform then leverages an

automated agent who places bids on behalf of advertisers for each

impression opportunity.

However, the intricacies of such auction format bring about chal-

lenges. Sellers usually outline their targeting strategies and maxi-

mum bids in advance. Such a proactive approach, while streamlin-

ing the process, risks being blind to the sellers’ budget constraints,

potentially resulting in sellers depleting their budgets prematurely.

This can halt sellers’ momentum, sidelining them from subsequent

ad auctions and causing them to miss out on valuable opportunities,

especially if high-traffic or high-response periods take place after

budget depletion. From the platform’s perspective, ensuring a con-

sistent and appropriate spending pattern for its sellers is also crucial

for maintaining their long-term trust and partnership [14, 17].

Motivated by this realistic challenge, a growing number of bud-

get pacing strategies have been introduced. These strategies, while

distinct in their motivation, share a common goal of guiding ad-

vertisers in maintaining a steady spending pattern. Prior works on

ads budget pacing can be classified into two streams, either from a

practical point of view motivated by empirical considerations, or

from more theoretical perspectives that seek to establish rigorous

performance guarantees yet under stronger assumptions.

Empirical Viewpoints.Many different budget pacing solutions

have been proposed by practitioners, who propose budget pacing

methods from various angles, such as bipartite graph allocation

methodologies [18], control theory [15, 21], simultaneously opti-

mizing business metrics such as click-through-rate (CTR) or return

on investment (ROI) [14, 17], or other empirical approaches [1, 22].

All of these solutions are implemented via one of the two bud-

get pacing approaches: (i) throttling, where the ad campaigns are

excluded from joining ad auctions probabilistically, and (ii) bid shad-
ing, where the advertiser’s expenditure is controlled via reducing

1
https://www.forbes.com/advisor/business/ecommerce-statistics/, accessed Nov 2023.

2
https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_

Advertising_Revenue_Report_2022.pdf, accessed Nov 2023.

https://doi.org/10.1145/3589335.3648331
https://doi.org/10.1145/3589335.3648331
https://doi.org/10.1145/3589335.3648331
https://www.forbes.com/advisor/business/ecommerce-statistics/
https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf
https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf
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their posed bids. While many of the aforementioned approaches are

investigated empirically, there are no formal theoretical guarantees

for the performance of these approaches.

Theoretical Viewpoints. Budget management has also aroused

increasing amount of interests in the research community from a

more theoretical perspective; see [2] for a comprehensive overview.

These works approached the problem of budget pacing using tools

such as game theory, mechanism design and learning theory, with

many of them establishing game-theoretic equilibria of budgeted

auctions [2, 7, 9, 10] or devised budget pacing strategies that satisfy

either performance guarantees for aggregate/individual utilities or

certain incentive properties [3, 5, 8, 12]. The majority of the works

in this realm again studied/proposed methods that can be consid-

ered as either throttling or bid shading. While these works offer

theoretical rigor that complements the prior empirical approaches,

many of them rely on stringent assumptions that fail to hold in a

noisy real-world environment, or relied on auction designs that are

rarely used in practice [4, 13].

Our work seeks to bridge the two viewpoints above by putting

theoretically inspired budget pacing approaches into an empirical

context, via the eBay marketplace sponsored search. In particular,

we focus on investigating the performance of an optimization-based

bid shading approach first proposed in [5]; called AdaptivePacing
(Algorithm 1). The algorithm is derived via the Lagrangian dual

of an advertiser’s utility optimization problem (see Section 2.3),

and has been shown to be an approximate optimal strategy under

ideal assumptions. By integrating the algorithm into the context

of eBay’s sponsored search environment, we not only assess its

performance amidst noisy real-world dynamics, but also propose

novel variants informed by both theoretical and empirical insights.

Via answering a number of practical research questions (Section 4),

we contribute in the following ways:

• We show that the optimization framework and the AdaptivePacing
method, along with their variants, can be integrated into our real-

world system and offer a number of advantages:

(1) The optimization framework gives advertisers flexible con-

trols over their spending patterns, rather than confining to

uniform or predetermined spending trajectories.

(2) It can encapsulate additional business constraints, balancing

the platform’s revenue with the advertisers’ utilities.

(3) The theoretical insights behind this framework also suggest

ways to differentiate treatment for different advertisers.

• We evaluate the performance of AdaptivePacing in compar-

ison to other empirical methods like throttling and PID con-

trollers. Drawing connections between our observations and

related theoretical results, we identify actionable improvements

for AdaptivePacing; see Section 4.2.

While this work focuses on the pay-per-click advertising model,

these contributions also apply to any other advertising models.

2 PRELIMINARIES AND METHODOLOGY

In this section, we introduce the setup of an sponsored search en-

vironment. We then formulate the optimization problem for ad cam-

paigns given the auctionmechanism, and describe the AdaptivePacing

algorithm (which is first introduced in [5] and adapted for our spon-

sored search setup). AdaptivePacing serves as the basis for our

development and testing in subsequent sections.

2.1 Background on sponsored search

In a sponsored search program, there are a number of search activi-

ties (impressions) 𝑖 ∈ I𝑡 being initiated at any given time 𝑡 ∈ [𝑇 ].
Whenever a user initiates a search, each ad campaign of the spon-

sored search program, denoted by 𝑘 ∈ [𝐾], is considered for re-

trieval to an internal ad auction that determines the allocation of

the sponsored placements for the search result page.

For each impression 𝑖 , campaign 𝑘 determines a maximum bid it

can post, denoted by 𝑣𝑘,𝑖 ∈ [0, 𝑣]. Retrieval is then performed based

on campaigns’ targeting strategies which can include manual and

auto targeting as well as their extensions. If campaign 𝑘’s targeting

strategy does not align with impression 𝑖 , we simply let 𝑣𝑘,𝑖 = 0.

Here, the maximum bid 𝑣𝑘,𝑖 can be viewed as a proxy for the ad

campaign’s valuation of the ad slot.

In addition to its maximum bid for each impression, the ad cam-

paign also provides the platform with (i) its total budget, denoted by
𝐵𝑘 , which is the total monetary value to be spent throughout the

horizon; and (ii) its target spending curve, captured by by 𝝆𝑘 ∈ Δ𝑇 ,
where 𝜌𝑘,𝑡 is the percentage of budget that campaign 𝑘 wishes

to allocate to round 𝑡 . The target spending curve determines the

rate at which the campaign wishes to spend its budget over time.

Some common examples include the uniform spending curve, the

traffic curve, the CTR curve, etc. (See Sections 4.1.1 and 4.2.2 for

experiments on different spending curves.)

Second-price multi-slot ads auction. For each search activ-

ity/impression 𝑖 , the sponsored search program conducts a second-

price multi-slot ads auction to determine the allocation of slots.

External competition, including other ad programs or ad deals, can

also enter this auction and thus impact campaigns’ strategies. Each

campaign in the sponsored search program should submit a bid

𝑏𝑘,𝑖 ∈ [0, 𝑣𝑘,𝑖 ], bounded by its maximum bid value. If 𝑏𝑘,𝑖 = 0, cam-

paign 𝑘 opts out of this auction. Having collected the bids from all

campaigns, the platform computes an ad expected value for each
campaign: 𝑟𝑘,𝑖 = 𝑏𝑘,𝑖𝑝𝑘,𝑖 , which is determined using campaign 𝑘’s

bid value 𝑏𝑘,𝑖 and its response probability 𝑝𝑘,𝑖 (i.e., click-through

rate for cost-per-click goal type). The campaigns are then ranked

based on their ad expected values.

If impression 𝑖 offers 𝑁 sponsored slots, the campaigns with the

top 𝑁 ad expected values would be allocated a slot in descending

order. Each winning campaign is charged a clearing price 𝑐𝑘,𝑖 if

a user response is recorded (i.e., click). Here, the clearing price is

computed based on the ad expected value of the campaign that

immediately follows, defined as 𝑑𝑘,𝑖 = max𝑖′ :𝑟𝑘,𝑖′<𝑟𝑘,𝑖 (𝑟𝑘,𝑖′ ). The
clearing price is subsequently determined as 𝑐𝑘,𝑖 = 𝑑𝑘,𝑖/𝑝𝑘,𝑖 , which
is inherently less or equal to the bid 𝑏𝑘,𝑖 .

3

3
For simplicity, in the rest of Section 2, we consider single-slot auctions when formu-

lating the campaign’s optimization problem and pacing algorithm. Nonetheless, the

same optimization framework would readily extend to a multi-slot setup, as discussed

by [12]. In our real-world experiments in Section 4, we also consider multiple ad slots.
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2.2 Campaign’s optimization problem

At the auction for impression 𝑖 , each campaign 𝑘 posts a bid 𝑏𝑘,𝑖 ∈
[0, 𝑣𝑘,𝑖 ] and has response probability 𝑝𝑘,𝑖 . With slight abuse of

notation, we let 𝑑𝑘,𝑖 be the highest ad expected value among the

rest of the campaigns: 𝑑𝑘,𝑖 = max𝑘 ′≠𝑘 𝑏𝑘 ′,𝑖 · 𝑝𝑘 ′,𝑖 . Campaign 𝑘 also

has a budget 𝐵𝑘 which constrains its maximum amount of spending

throughout the horizon.

Campaign 𝑘 needs to determine 𝑥𝑘,𝑖 ∈ {0, 1}, i.e., whether it
wishes to win impression 𝑖 . Note that if campaign 𝑘 is not con-

strained by budget, it would always wish to win the impression.

However, with the budget constraint in mind, campaign 𝑘 needs to

focus on winning impressions that yield the highest utilities. The

expected utility that campaign 𝑘 receives from impression 𝑖 is

𝑥𝑘,𝑖
(
𝑣𝑘,𝑖 − 𝑐𝑘,𝑖

)
𝑝𝑘,𝑖 = 𝑥𝑘,𝑖

(
𝑣𝑘,𝑖𝑝𝑘,𝑖 − 𝑑𝑘,𝑖

)
(1)

where 𝑣𝑘,𝑖 − 𝑐𝑘,𝑖 captures the utility gained by campaign 𝑘 if it is

shown in search 𝑖 and receives a user response, while 𝑝𝑘,𝑖 is the user

response probability. The equality in (1) follows from the definition

of the clearing price (𝑐𝑘,𝑖 = 𝑑𝑘,𝑖/𝑝𝑘,𝑖 ). Similarly, we can write the

expected spending of campaign 𝑘 on impression 𝑖 as follows:

𝑥𝑘,𝑖𝑐𝑘,𝑖𝑝𝑘,𝑖 = 𝑥𝑘,𝑖𝑑𝑘,𝑖 . (2)

Given Equations (1) and (2), a campaign 𝑘 that seeks to maximize

its total expected utility throughout the horizon subject to its budget

constraint can thus solve the following optimization problem:

max

𝑥𝑘,𝑖 ∈{0,1}

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑡

𝑥𝑘,𝑖
(
𝑣𝑘,𝑖𝑝𝑘,𝑖 − 𝑑𝑘,𝑖

)
s.t.

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑡

𝑥𝑘,𝑖𝑑𝑘,𝑖 ≤ 𝐵𝑘

(3)

2.3 The AdaptivePacing algorithm

The campaign’s optimization problem in (3) motivates the design

of the AdaptivePacing algorithm (detailed in Algorithm 1), which

was first introduced by [5]. This algorithm has been tailored in

our study to suit the context of sponsored search, as discussed in

Section 2.1. Below, we provide an overview of the fundamental

concepts that underpin the design of AdaptivePacing.

Algorithm 1 AdaptivePacing

Input: Total budget 𝐵𝑘 , target spending rate 𝝆𝑘 , step size 𝜖𝑘,𝑡

(1) Initialize pacing multiplier 𝜇𝑘,𝑡 = 0

(2) For 𝑡 in 1, . . . ,𝑇

(a) Whenever campaign 𝑘 joins auction for impression 𝑖 ∈ I𝑡 ,
with maximum bid 𝑣𝑘,𝑖

• Post bid 𝑏𝑘,𝑖 =
𝑣𝑘,𝑖

1+𝜇𝑘,𝑡
• Realized spending 𝑧𝑘,𝑖 = 𝑏𝑘,𝑖 if campaign 𝑘 wins the im-

pression and it gets clicked; 𝑧𝑘,𝑖 = 0 otherwise.

(b) Compute total realized spending 𝑧𝑘,𝑡 =
∑
𝑖∈I𝑡 𝑧𝑘,𝑖

(c) Update the pacing multiplier

𝜇𝑘,𝑡+1
= 𝜇𝑘,𝑡 − 𝜖𝑘,𝑡 (𝜌𝑘,𝑡𝐵𝑘 − 𝑧𝑘,𝑡 )

To solve Problem (3) in a real-time fashion, we start by formulat-

ing the Lagrangian of the optimization problem in (3) by introducing

𝜇𝑘 ≥ 0 as the dual variable associated with the budget constraint.

We then write the Lagrangian dual problem of (3) as the following:

inf

𝜇𝑘 ≥0

max

𝑥𝑘,𝑖 ∈{0,1}

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑡

𝑥𝑘,𝑖
(
𝑣𝑘,𝑖𝑝𝑘,𝑖 − 𝑑𝑘,𝑖

)
+ 𝜇𝑘 · (𝐵𝑘 −

𝑇∑︁
𝑡=1

𝑥𝑘,𝑡𝑑𝑘,𝑡 )

= inf

𝜇𝑘 ≥0

max

𝑥𝑘,𝑖 ∈{0,1}

𝑇∑︁
𝑡=1

[ ∑︁
𝑖∈I𝑡

𝑥𝑘,𝑖
(
𝑣𝑘,𝑖𝑝𝑘,𝑖 − (1 + 𝜇)𝑑𝑘,𝑖

)
+ 𝜇𝑘𝜌𝑘,𝑡𝐵𝑘

]
Note that to solve the inner optimization problem, the optimal

solution is to let 𝑥𝑘,𝑖 = 1{𝑣𝑘,𝑖𝑝𝑘,𝑖 ≥ (1 + 𝜇𝑘 )𝑑𝑘,𝑖 }. That is, the
campaignwants to win all auctions 𝑡 such that 𝑣𝑘,𝑖𝑝𝑘,𝑖 ≥ (1+𝜇𝑘 )𝑑𝑘,𝑖 .
This is achieved by having campaign 𝑘 post bid

𝑏𝑘,𝑖 =
𝑣𝑘,𝑖

1 + 𝜇𝑘
.

We call 𝜇𝑘 the pacing multiplier of campaign 𝑘 , as it directly regu-

lates the extent of pacing by modifying the bid value.

Having solved the inner optimization problem, we can then

rewrite the Lagrangian dual problem of (3) as the following:

inf

𝜇𝑘 ≥0

𝑇∑︁
𝑡=1

[ ∑︁
𝑖∈I𝑡

(
𝑣𝑘,𝑖𝑝𝑘,𝑖 − (1 + 𝜇)𝑑𝑘,𝑖

)+ + 𝜇𝜌𝑘,𝑡𝐵𝑘
]
, (4)

where 𝑦+ := max(𝑦, 0). Given the Lagrangian dual problem in (4),

we next solve for the pacing multiplier 𝜇𝑘 such that the above

objective is minimized. Since we do not have prior information on

observed values 𝑣𝑘,𝑖 and competing bids 𝑑𝑘,𝑖 , the adaptive pacing

algorithm approximates the optimal 𝜇𝑘 using a subgradient descent

method, where we maintain a pacing multiplier 𝜇𝑘,𝑡 at the end of

each round, and keep updating its value in the following way.

In particular, consider

𝜙𝑘,𝑡 (𝜇𝑘 ) :=
∑︁
𝑖∈I𝑡

(
𝑣𝑘,𝑖𝑝𝑘,𝑖 − (1 + 𝜇)𝑑𝑘,𝑖

)+ + 𝜇𝜌𝑘,𝑡𝐵𝑘 ,

with the following subgradient:

𝜕𝜙𝑘,𝑡 (𝜇) = 𝜌𝑘,𝑡𝐵𝑘 −
∑︁
𝑖∈I𝑡

𝑑𝑘,𝑡1{𝑣𝑘,𝑡𝑝𝑘,𝑖 ≥ (1 + 𝜇)𝑑𝑘,𝑡 } = 𝜌𝑘,𝑡𝐵𝑘 − 𝑧𝑘,𝑡 (𝜇) ,

where 𝑧𝑘,𝑡 (𝜇) :=
∑
𝑖∈I𝑡 𝑑𝑘,𝑡1{𝑣𝑘,𝑡𝑝𝑘,𝑖 ≥ (1 + 𝜇)𝑑𝑘,𝑡 } is campaign

𝑘’s expected amount of expenditure if it posts bid 𝑏𝑘,𝑖 =
𝑣𝑘,𝑖
1+𝜇 for all

auctions 𝑖 ∈ I𝑡 at the 𝑡th round. This prompts us to perform the

following (sub)gradient descent scheme on the dual multiplier 𝜇𝑘,𝑡 :

𝜇𝑘,𝑡+1
= 𝜇𝑘,𝑡 − 𝜖𝑘,𝑡 (𝜌𝑘,𝑡𝐵𝑘 − 𝑧𝑘,𝑡 ) ,

where 𝑧𝑘,𝑡 is the actual realized expenditure incurred by campaign

𝑘 during the 𝑡 th round, and 𝜖𝑘,𝑡 is the update step size.

The theoretically sound AdaptivePacing algorithmwould serve

as the main building block of our study. In subsequent sections,

we will showcase its practical effectiveness within a real-world

system and adapt AdaptivePacing to accommodate a range of

business cases. Additionally, we also investigate its empirical links

to well-established methods in control theory and pursue further

enhancements inspired by these connections.
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3 EBAY SPONSORED SEARCH TEST BED

In this section, we detail the production simulation test bed for a

sponsored search program in an online marketplace, which is the

simulation environment we will adopt for all of our experiments in

Section 4. We also introduce the key business metrics that we use

for evaluation of budget pacing algorithms.

3.1 Sponsored search test bed

Sponsored search test bed is a counterfactual simulator based on

historical records of users’ search requests, simulating the entire

product environment for a duration of a day, which is a typical

budget duration of sponsored search campaigns’ budgets [19]. The

sponsored search gym is an environment that scales by subdividing

the simulation period into small time segments within which each

search request and ad auction is treated independently. Real-time

budget signal estimation stands as the optimal approach, but its

implementation may slow down research progress and, more im-

portantly, could destabilize the practical system due to the heavy

computational load. Consequently, adopting near-real-time updates

with a one-minute resolution emerges as a judicious compromise

between computational complexity and modeling precision.

The process of retrieval based on targeting input, an essential

component in practical scenarios, is intricate and time-intensive. It

necessitates activities like sorting by relevance and other critical

metrics. To emulate this targeting-based retrieval task, a unique

targeting set is constructed for each search query, sourced from

logged recall sets. The bid value associated with an item within a

campaign is contingent on its targeting strategy, particularly con-

cerning keywords, which might exhibit overlaps. Consequently,

the calculation of the ad expected value accords precedence to the

ad group with the highest bid, akin to the production system’s

approach. Probability of user response is generated based on avail-

able features, while user response necessary to generate spend is

simulated on the principle of counterfactual modeling.

The quality of the test bed was reported earlier in [19], compar-

ing it to the original data and results based on naive simulations.

Although certain disparities in the simulation results vis-à-vis real

traffic may arise from the approximations inherent to the test bed,

the reported results show that the principal components of the

sponsored search gym, notably response probability generation,

result in a notable enhancement across key performance metrics.

3.2 Business metrics

Our evaluation of budget pacing approaches involves assessing a

number of key system-level performance metrics. The main metrics

we consider include the number of impressions (Imps) won by the

campaigns in our sponsored program; the number of clicks (Clks);

total ad revenue (Rev); average click-through rate (CTR); average

cost-per-click (CPC), a seller-oriented metric that evaluates their

cost; surface rate (SR), which is the percentage of sponsored slots

won by campaigns in the sponsored search program (recall that

other ad programs/deals can also join the auctions and compete for

visibility). Finally, another central metric we assess is the pacing

error (PE), defined as: PE = (1/𝑇 ) × ∑𝑇
𝑡=1

|𝑝𝑆𝑡−𝑝𝑇𝑡 |
𝑝𝑇𝑡

, with 𝑝𝑆𝑡 and

𝑝𝑇𝑡 as the fraction of total spend and traffic at 𝑡-th round. This

metric measures smoothness of system-level spend over a day using

the traffic curve as a reference. A lower pacing error is more ideal.

4 PRACTICAL RESEARCH QUESTIONS AND

EXPERIMENT RESULTS

In this section, we aim to reconcile theory and practice by evalu-

ating the performance of the optimization-based AdaptivePacing
method and its variants, and making comparisons with other com-

monly adopted budget pacing approaches. We leverage eBay’s spon-

sored search test bed detailed in Section 3.1, and evaluate the per-

formance of our algorithms using key metrics in Section 3.2. Based

on these, we address a number of research questions of practical

significance to online platforms.

In the following experiments, all of the results are expressed

as percentage variations relative to the metrics observed under

no-pacing (that is, each campaign 𝑘 always posts maximum bid

𝑣𝑖,𝑡 whenever it joins an auction for impression 𝑖 , until its budget

gets depleted). We let each round 𝑡 span one minute and the entire

time horizon is set to be𝑇 = 1440, which is the duration of one day.

The default target spending curve used by AdaptivePacing and its
variants is the traffic curve, where 𝜌𝑘,𝑡 = |I𝑡 |/

∑
1440

𝑡=1
|I𝑡 | represents

the fraction of traffic during the 𝑡-th minute. The default step size

is set to be 𝜖𝑘,𝑡 = 0.01 unless stated otherwise.

4.1 Optimization-based budget pacing in a

real-world system

We start by evaluating the effectiveness of the optimization-based

AdaptivePacing method in our real-world test-bed.

4.1.1 Does the optimization-basedAdaptive Pacing approach
work in a real-world system? As alluded in our prior discussion,

real-world systems do not really satisfy the many assumptions that

are deemed crucial to the performance guarantees of the Adaptive

Pacing Algorithm, as stated in [5]. In particular, [5] established

that (i) in a stationary environment where 𝑣𝑘,𝑖 and 𝑑𝑘,𝑖 are both

drawn independently from fixed distributions, AdaptivePacing
would enjoy near-optimal performance in the long run; (ii) in an

adversarial setting, the algorithm is shown to ensure that the cam-

paign would receive 𝐵𝑘/𝑣𝑇 of the optimal utility in hindsight as

𝑇 → ∞ (see Theorem 3.3 in [5]). However, in a real-world online

marketplace with arbitrary arrivals, the insights one can obtain

from the above theoretical results remain limited. This is because (i)

the environment is in no way stationary as the campaigns provide

maximum bids in an arbitrary fashion; (ii) we may assume that a

majority of campaigns have small budgets or receive small number

of clicks due to high competition in the environment, making the

theoretical ratio under adversarial setting 𝐵𝑘/𝑣𝑇 arbitrarily small;

(iii) the budgets of all campaigns are typically reset daily or weekly,

meaning that we are working with a non-asymptotic time horizon.

Having these in mind, we first evaluate the performance of the

vanilla AdaptivePacing (Algorithm 1) in eBay’s test bed, under

different target spending curves. To better evaluate its performance,

we additionally consider a throttling approach from [19] (referred to

as Throttling) as our baseline, which probabilistically determine

whether to let campaigns enter auctions and aims for uniform

spending for all campaigns (see Appendix A for a description of

this method and a detailed comparison between throttling and

our bid shading approach). All results are recorded as percentage

variations compared to metrics attained under no-pacing.
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Table 1 shows that AdaptivePacing outperforms no-pacing and

Throttling across several crucial metrics, such as impressions,

clicks, and surface rate, indicating that campaigns are utilizing their

budgets more effectively and appearing more frequently in search

results. CPC also decreases significantly, further enhancing adver-

tiser utilities. We observe a decrease in total ad revenue precisely

because AdaptivePacing always lets campaigns post bids less than

their maximum bids, which reduces the clearing price (as seen in

CPC) under the second-price auction mechanism. Finally, in terms

of the pacing error, AdaptivePacing manages to reduce pacing er-

ror by as high as 18% when the traffic curve is adopted. Conversely,

while Throttling minimizes pacing error, it does so at the cost

of other vital metrics (see Appendix A for a detailed evaluation of

throttling.) We also invite readers to see Appendix B for illustra-

tions of business metrics under AdaptivePacing and Throttling
over the entire horizon, which shows how AdaptivePacing lets

advertisers seize opportunities whenever they arise.

In Table 1, the performance of AdaptivePacing is evaluated

under different target spending curves, captured by 𝝆𝑘 . We have

tried (i) the traffic curve, where 𝜌𝑘,𝑡 is the proportion of the amount

of traffic during the 𝑡-th minute; (ii) the uniform spending curve,

where 𝜌𝑘,𝑡 = 1/1440, which aims to spend uniformly in eachminute;

(iii) the CTR curve, where 𝜌𝑘,𝑡 is set to be proportional to the CTR

curve from prior data. We can observe from Table 1 that different

target spending curves lead to different outcomes, and no single tar-

get spending curve would dominate from the advertisers’ perspec-

tive. For example, the traffic curve leads to the most improvements

in terms of the number of impressions, clicks, and pacing error,

while the campaigns saves the most spending under the CTR curve.

AdaptivePacing enables the campaigns (advertisers) to flexibly

select any target spending curve best suited to their needs. See

Section 4.2.2 for an extended discussion on how different target

spending curves influence the campaigns’ spending patterns.

Table 1: Performance of AdaptivePacing (w. different target
spending curves) and Throttling [19]. Results are shown as

percentage variations relative to no-pacing.

Spending Curve Imps Clks Rev CTR CPC SR PE

AdaptivePacing

Traffic 6.21% 5.48% -5.39% -0.50% -10.20% 6.01% -18.72%

Uniform 5.51% 5.03% -6.26% -0.26% -10.55% 5.79% -10.74%

CTR 5.46% 4.90% -6.43% -0.35% -10.57% 5.89% -9.85%

Throttling

Uniform -0.45% -1.10% -1.89% -0.88% -0.28% -7.76% -51.62%

Despite the absence of key assumptions in a noisy real-world set-

ting, the performance of AdaptivePacing aligns well with the the-

oretical results presented in [5], and confirm that AdaptivePacing
can substantially enhance the benefits for campaigns (advertisers)

by offering them an increased number of impressions/clicks with

reduced costs due to a drop in the clearing price. However, note that

this also presents an inherent tradeoff between the utilities cam-

paigns receive and the revenue garnered by the platform. The drop

in campaigns’ spending also implies a potential revenue loss for the

platform, which might deter the platform from implementing the

AdaptivePacing approach. A better mechanism might need to be

introduced to incentivize the platform to employ budget pacing. An

ideal system would grant the platform the capability to calibrate the

perceived trade-offs, striking a balance between its own business

objectives (revenue) and maximizing advertisers’ utilities. This will

be investigated in the subsequent section.

4.1.2 How to balance the platform’s and advertisers’ inter-
ests? AdaptivePacing (Algorithm 1) is designed with the goal of

maximizing the overall gain of individual ad campaigns, as sug-

gested by the optimization framework in Section 2.3. However, as

seen in Section 4.1.1, AdaptivePacing would lead to a decrease in

the platform’s revenue as high as over 6%, which conflicts with the

platform’s primary objective of maximizing its own revenue.

To reconcile the platform’s objective with advertiser utilities, we

present an alternative optimization problem for campaign 𝑘 , which

introduces an additional constraint to ensure that the platform

would receive a reasonable share of revenue after budget pacing:

max

𝑥𝑘,𝑖 ∈{0,1}

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑡

𝑥𝑘,𝑖
(
𝑣𝑘,𝑖𝑝𝑘,𝑖 − 𝑑𝑘,𝑖

)
s.t.

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑡

𝑥𝑘,𝑖𝑑𝑘,𝑖 ≤ 𝐵𝑘

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑡

𝑥𝑘,𝑖𝑑𝑘,𝑖 ≥ 𝛼𝑘 · 𝐵𝑘

(5)

where the second constraint is called the minimum-spending con-
straint, and 𝛼𝑘 ∈ [0, 1] is the minimum percentage of budget that

the platform would like campaign 𝑘 to at least spend throughout

the horizon. Here, we allow the platform to freely determine the

value of 𝛼𝑘 based on its business need.

Using similar derivations as in Section 2.3, we let 𝜇𝑘 , 𝛾𝑘 ≥ 0

be the dual variables associated with the budget constraint and

the minimum-spending constraints. Solving the Lagrangian dual

problem problem of (5) gives that campaign 𝑘 should post bid

𝑏𝑘,𝑖 =
𝑣𝑘,𝑖

1 + (𝜇𝑘 − 𝛾𝑘 )+
(6)

whenever it bids for impression 𝑖 . Here, 𝜇𝑘 is the pacing multi-
plier we had previously in Section 2.3, and we call 𝛾𝑘 the spending
multiplier that additionally regulates the extent of spending.

We can again update both multipliers using the subgradient

descent method as follows:

𝜇𝑘,𝑡+1
=

(
𝜇𝑘,𝑡 − 𝜖𝑘,𝑡

(
𝜌𝑘,𝑡𝐵𝑘 − 𝑧𝑘,𝑡

) )+
𝛾𝑘,𝑡+1

=

(
𝛾𝑘,𝑡 − 𝜖′𝑘,𝑡

(
𝑧𝑘,𝑡 − 𝛼𝑘 · 𝜌𝑘,𝑡𝐵𝑘

) )+
where 𝜖𝑘,𝑡 is the step size that controls our rate of pacing, while 𝜖

′
𝑘,𝑡

is the step size that controls our rate of stimulating spending. This

then gives a variant of AdaptivePacing that additionally allows

the platform to ensure its business objective (revenue) remains at a

desired level, while maximizing the advertisers’ utilities. We call

this algorithm AdaptivePacing-SpendingPenalty (Algorithm 2).

Remark 4.1 (Connectionwithchoosingtheright spend-

ing curve.). We remark that AdaptivePacing-SpendingPenalty
(Algorithm 2) is in fact equivalent to vanilla AdaptivePacing (Al-
gorithm 1) that adopts a carefully crafted target spending curve.
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Algorithm 2 AdaptivePacing-SpendingPenalty

Input: Total budget 𝐵𝑘 , target spending rate 𝝆𝑘 , minimum

spending percentage 𝛼𝑘 , step size 𝜖𝑘,𝑡

(1) Initialize pacing and spending multipliers 𝜇𝑘,𝑡 , 𝛾𝑘,𝑡 = 0

(2) For 𝑡 in 1, . . . ,𝑇

(a) Whenever campaign 𝑘 joins auction for impression 𝑖 ∈ I𝑡 ,
with maximum bid 𝑣𝑘,𝑖

• Post bid 𝑏𝑘,𝑖 =
𝑣𝑘,𝑖

1+(𝜇𝑘,𝑡−𝛾𝑘,𝑡 )+
• Realized spending 𝑧𝑘,𝑖 = 𝑏𝑘,𝑖 if campaign 𝑘 wins the auc-

tion and gets clicked; 𝑧𝑘,𝑖 = 0 otherwise.

(b) Compute total realized spending 𝑧𝑘,𝑡 =
∑
𝑖∈I𝑡 𝑧𝑘,𝑖

(c) Update the pacing and spending multipliers

𝜇𝑘,𝑡+1
=

(
𝜇𝑘,𝑡 − 𝜖𝑘,𝑡

(
𝜌𝑘,𝑡𝐵𝑘 − 𝑧𝑘,𝑡

) )+
𝛾𝑘,𝑡+1

=

(
𝛾𝑘,𝑡 − 𝜖′𝑘,𝑡

(
𝑧𝑘,𝑡 − 𝛼𝑘 · 𝜌𝑘,𝑡𝐵𝑘

) )+
To see that, note that if we take 𝜖′

𝑘,𝑡
= 𝑐 ·𝜖𝑘,𝑡 for some constant 𝑐 > 0,

and let𝜂𝑘,𝑡 = 𝜇𝑘,𝑡−𝛾𝑘,𝑡 , applying AdaptivePacing-SpendingPenalty
is equivalent to having campaign 𝑘 post bid 𝑏𝑘,𝑖 =

𝑣𝑘,𝑖
1+𝜂𝑘,𝑡 for impres-

sion 𝑖 ∈ I𝑡 at round 𝑡 , and making the following update:

𝜂𝑘,𝑡+1
= 𝜇𝑘,𝑡+1

− 𝛾𝑘,𝑡+1

=

(
𝜇𝑘,𝑡 − 𝜖𝑘,𝑡

(
𝜌𝑘,𝑡𝐵𝑘 − 𝑧𝑘,𝑡

) )
−

(
𝛾𝑘,𝑡 − 𝜖′𝑘,𝑡

(
𝑧𝑘,𝑡 − 𝛼𝑘 · 𝜌𝑘,𝑡𝐵𝑘

) )
=

(
𝜇𝑘,𝑡 − 𝛾𝑘,𝑡

)
− 𝜖𝑘,𝑡

(
(1 + 𝑐 · 𝛼𝑘 ) · 𝜌𝑘,𝑡𝐵𝑘 − (1 + 𝑐)𝑧𝑘,𝑡

)
= 𝜂𝑘,𝑡 − (1 + 𝑐)𝜖𝑘,𝑡 ·

(
1 + 𝑐 · 𝛼𝑘

1 + 𝑐 · 𝜌𝑘,𝑡𝐵𝑘 − 𝑧𝑘,𝑡
)

which is equivalent to AdaptivePacing with a different step size
𝜖𝑘,𝑡 = (1 + 𝑐)𝜖𝑘,𝑡 = 𝜖𝑘,𝑡 + 𝜖′𝑘,𝑡 and a different target spending curve

𝜌𝑘,𝑡 =
1 + 𝑐 · 𝛼𝑘

1 + 𝑐 · 𝜌𝑘,𝑡 .

Note that as 𝑐 → 0, AdaptivePacing-SpendingPenalty exactly
approaches vanilla AdaptivePacing.

Nonetheless, the target spending curve 𝜌𝑘,𝑡 here is in general more
difficult to determine in practice. Our optimization-based formulation
in (5), on the other hand, allows us to observe/control the rates of
pacing and spending in a more interpretable fashion. One can imme-
diately tell how much the campaign is overspending (underspending)
at any time by directly observing the magnitude of the pacing (spend-
ing) multiplier. For instance, if at the 𝑡-th minute campaign 𝑘 has
multipliers 𝜇𝑘,𝑡 > 0, 𝛾𝑘,𝑡 = 0, it is evident that this campaign is
overspending at that point; and vice versa.

In Table 2, we evaluate AdaptivePacing-SpendingPenalty un-
der varied step sizes for pacing (𝜖𝑘,𝑡 = 𝜖) and spending (𝜖′

𝑘,𝑡
= 𝜖′)

respectively, which encapsulate the platform’s prioritization be-

tween spending and pacing. For the purpose of comparison, for

each campaign, we set the minimum spend percentage 𝛼𝑘 to be the

percentage of the budget spent by campaign 𝑘 under no-pacing.

In reality, the platform is free to determine the minimum spend

percentage based on how much it cares about maintaining its rev-

enue. It can be seen from Table 2 that when we take 𝜖𝑘,𝑡 = 0.01 and

𝜖′
𝑘,𝑡

= 0.1 (i.e., when the platform places more priority on maintain-

ing its own revenue than budget pacing), the total spending of cam-

paigns got significantly increased compared to AdaptivePacing.

Table 2: Performance of AdaptivePacing-SpendingPenalty
under different update step sizes for pacing multipliers

𝜖𝑘,𝑡 = 𝜖 and for spending multipliers 𝜖′
𝑘,𝑡

= 𝜖′.

𝜖 𝜖 ′ Imps Clks Rev CTR CPC SR PE

0.1 0.1 5.63% 5.13% -3.50% -0.32% -8.20% 5.58% -20.08%

0.01 0.01 3.95% 3.20% -5.15% -0.64% -8.03% 3.51% -37.98%

0.01 0.1 4.06% 3.67% -1.16% -0.29% -4.88% 4.30% -14.09%

0.1 0.01 3.77% 2.75% -8.27% -0.89% -10.42% 3.63% -37.26%

4.1.3 How do we differentiate treatments for different types
of campaigns? In all of the experiments above, we have applied

the same pacing methods to all campaigns simultaneously. This

raises the following question: Would differentiating treatments for

different campaigns improve our business metrics? For example, we

have observed a drop in platform’s revenue due to AdaptivePacing
decreasing clearing prices for all campaigns. Can we restrict pacing

only to some campaigns during certain time periods to prevent

clearing prices from dropping too much?

Table 3: Performance of heuristics of AdaptivePacing that

ONLY adopt budget pacing under certain conditions.

Conditions Imps Clks Rev CTR CPC SR PE

AdaptivePacing-Budget

𝐵𝑘 ≤ 5000 5.18% 4.72% -3.82% -0.27% -8.14% 5.20% -12.15%

𝐵𝑘 ≤ 7500 5.48% 5.01% -4.26% -0.31% -8.77% 5.44% -15.03%

𝐵𝑘 ≤ 10000 5.52% 5.00% -4.49% -0.33% -8.98% 5.51% -15.04%

AdaptivePacing-Click

low-click 3.39% 3.15% -2.45% -0.16% -5.48% 3.30% -7.92%

high-click 3.13% 2.65% -2.98% -0.31% -5.30% 2.93% -10.98%

AdaptivePacing-Time

𝑡 ≤ 1140 6.11% 5.42% -4.19% -0.48% -8.76% 5.89% -22.65%

𝑡 ≤ 1200 6.19% 5.50% -4.54% -0.48% -9.07% 5.97% -21.87%

𝑡 ≤ 1260 6.24% 5.52% -4.86% -0.50% -9.42% 6.02% -20.96%

AdaptivePacing-BudgetSpent

PS ≥ 50% 6.46% 5.62% -3.85% -0.63% -8.88% 6.25% -19.66%

PS ≥ 75% 6.44% 5.66% -2.90% -0.57% -8.07% 6.23% -20.73%

PS = 100% 6.48% 5.73% -1.96% -0.54% -7.27% 6.27% -20.42%

For the platform, the information that can aid in distinguishing

different campaigns comprises of: (1) the total budget of a campaign

𝐵𝑘 ; (2) its maximum bid 𝑣𝑘,𝑖 for each impression; (3) the current time

𝑡 , (4) a campaign’s remaining budget at round 𝑡 . Given these, we first

designed and experimented on three simple heuristics that restrict

AdaptivePacing (Algorithm 1) to some campaigns at certain time,

while not adopting budget pacing for others:

(1) AdaptivePacing-Budget: Within eBay’s sponsored search pro-

gram, many high-budget campaigns don’t exhaust their budget

even under no-pacing. Hence, pacing these campaigns would

only hinder them from bidding on impressions despite their

capability to spend more. Observing this, our first heuristic,

AdaptivePacing-Budget, would only apply AdaptivePacing
to campaigns with initial budgets below a budget threshold 𝐵.

Initial trials with various threshold levels 𝐵 = 5000, 7500, 10000

showed increased spending when AdaptivePacing was not

universally applied, but also resulted in fewer impressions and

clicks, along with a higher pacing error, indicating a trade-off

when pacing high-budget campaigns (see Table 3).
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(2) AdaptivePacing-Click: Another way to differentiate the cam-

paigns is to examine their click opportunities, defined as 𝐶𝑘 =

𝐵𝑘/max𝑖 𝑣𝑖,𝑘 , which is the minimum number of clicks they can

generate if depleting their existing budget. We tried only pacing

the low-click campaigns with bottom 50% click opportunities,

and high-click campaigns with top 50% click opportunities re-

spectively (see Table 3). In both cases, we have observed an

increase in spending, yet again accompanied by a trade-off in

impressions, clicks, and pacing error when compared to ap-

plying AdaptivePacing universally. Interestingly, pacing the
low-click campaigns resulted in better performance, suggesting

that pacing is more advantageous for campaigns with limited

click opportunities.

(3) AdaptivePacing-Time: Finally, we consider a heuristic that

paces in earlier time periods and halts pacing for all campaigns

later on. Given that our simulation is run on a daily basis, we

tried only applying AdaptivePacing to all campaigns before

7PM, 8PM and 9PM (i.e., 𝑡 ≤ 1140, 1200, 1260); see Table 3.

We observe a slight increase in spending compared to per-

forming AdaptivePacing all day. Interestingly, the number

of impressions/clicks doesn’t drastically decline, and there is

even a noticeable enhancement in pacing error. The efficacy of

AdaptivePacing-Time primarily stems from the fact that our

simulation, similar to many real-world systems, are conducted

on a daily/weekly basis and any remaining budget is forfeited

by the end of the time horizon. On the contrary, the theoretical

guarantees tied to AdaptivePacing are established asymptoti-

cally, and hence become less informative in a real-world system.

4.1.4 What are the right campaigns to pace? Our simple heuris-

tics in Section 4.1.3 have shed some light on the outcomes from

differentiating treatments for different advertisers at different times.

Given the promising theoretical implications of the optimization-

based framework that motivates the design of AdaptivePacing,
we are also prompted to consider which campaigns would/would

not benefit from bid pacing from a theoretical perspective.

To start, we first consult the theoretical results in [5], which

suggest that under ideal assumptions and the asymptotic time hori-

zon, AdaptivePacing would lead the pacing multipliers 𝜇𝑘,𝑡 of

campaign 𝑘 to approximately converge to some “optimal” pacing

multiplier 𝜇★
𝑘
. For campaigns whose budget constraints are not

tight under the optimization framework in (3), their optimal pacing

multiplier would simply be 𝜇★
𝑘
= 0; while for campaigns with tight

budget constraints, there exist a positive multiplier 𝜇★
𝑘

> 0 that

they should adopt in hindsight. (See Theorem 4.3 in [5].)

Even though the results above may not align perfectly with real-

world scenarios where some crucial assumptions fail to hold, we

can still derive valuable insights. At a high level, these observations

emphasize the significance of distinguishing between campaigns

with binding/non-binding budget constraints when addressing (3).

In light of this, if the goal of AdaptivePacing is to help campaigns

identify their optimal pacing multiplier over time, one strategy is

to only apply AdaptivePacing to campaigns anticipated to have

binding budget constraints, which should expedite the process.

Our heuristic, AdaptivePacing-BudgetSpent, is motivated from

this idea—we first consider the proportion of budget that each cam-

paign spent under no-pacing from prior data (denoted by PS), and

restrict pacing to campaigns that have spent a sufficient propor-

tion of their budget. Table 3 records the attained metrics when

AdaptivePacing is only applied to campaigns that spent over 50%,

75% and 100% of their initial budget. Surprisingly, by only pacing the

campaigns that completely depleted their budget (which typically

only accounts for a very small fraction of all campaigns in sponsored

search programs), we in fact attain the best overall metric com-

pared to prior methods. Compared to applying AdaptivePacing
to all campaigns (see Table 1), only pacing the campaigns that need

pacing the most would maintain the increase in terms of impres-

sions/clicks, while ensuring that the spending does not decrease

too much, satisfying the platform’s business needs.

We conjecture that our simple heuristics AdaptivePacing-Budget
and AdaptivePacing-Click, discussed in Section 4.1.3, improve

our metrics precisely because the total budgets and/or maximum

attainable number of clicks are rough indicators of whether a

campaign has binding budget constraints or not. Our heuristic

AdaptivePacing-Time, on the other hand, leads to improvements

essentially because it helps all campaigns whose budget constraints

are not binding reach their optimal multiplier 0 instantaneously.

Nonetheless, it is also evident that these heuristics are far from

perfect indicators for whether the budget constraints are binding

for each campaign, and can lead to a tradeoff in our metrics.

Our promising result for AdaptivePacing-BudgetSpent sug-

gest that a platform can look for ways to predict the likelihood of a

campaign depleting their budget if no pacing were adopted. One

simplistic approach is to perform no-pacing for all campaigns for

a short period (e.g., one week), and identify the campaigns that

have nearly depleted their budget. The platform can then rely on

such information to restrict AdaptivePacing to the budget-binding
campaigns that need pacing the most.

4.2 Comparison and connection with other

budget pacing approaches

In practice, a number of budget pacing methods have been proposed

and adopted in search advertising programs. In this section, we ad-

dress the following question: How does the optimization-based

AdaptivePacingmethodmeasure up against other commonly

adopted budget pacing methods? In Section 4.2.1, we focus our

attention on the PID controller, which is a heuristic widely adopted

in practice. In Appendix A, we further offer an extended discussion

that compare AdaptivePacing against throttling approaches.

4.2.1 AdaptivePacing versus PID controllers. The PID con-

trollers are widely used in the industry as heuristics for budget

pacing [20, 21]. However, there in fact exists a somewhat surprising

connection between AdaptivePacing and the PID controller.

Very recently, the authors of [6] connects the optimization frame-

work (3), which motivated AdaptivePacing, and the PID controller

approaches. At a high level, the AdaptivePacing method can be

viewed as a special case of a dual-based PID controller. To see that,

if we use a PID controller to update the pacing multiplier 𝜇𝑡 , the

update would work as follows:

𝜇𝑡+1 = max

(
𝜇𝑡 − 𝜆𝑃𝑔𝑡 − 𝜆𝐼

𝑡−1∑︁
𝑠=0

𝑔𝑡−𝑠 − 𝜆𝐷 (𝑔𝑡 − 𝑔𝑡−1) , 0
)

(7)
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where 𝜆𝑃 , 𝜆𝐼 , 𝜆𝐷 > 0 are respectively the step sizes associated

with the proportional (P), integral (I) and derivative (D) terms.

Under the optimization framework in (3), the error term is ex-

actly our subgradient 𝑔𝑡 = 𝜌𝑘,𝑡𝐵𝑘 − 𝑧𝑘,𝑡 . Given the form in (7),

AdaptivePacing essentially works as a special case of the PID

controller, also known as a P controller, where 𝜆𝐼 = 𝜆𝐷 = 0. The

PID controller additionally incorporates (i) past momentum via the

integral term, which has been shown effective in leading to faster

convergence in optimization-based methods [16] and (ii) optimism
via the derivative term, which can improve the performance of the

gradient descent [11].

In view of the close connection between AdaptivePacing and
the PID controller, we consider a dual-based PID controller as a spe-

cial extension of AdaptivePacing with practical importance, and

test the performance of PID controller in our test bed. In practice,

the PID controllers are often designed to update a control variable

(in our case, 𝜇𝑘,𝑡 ), and the control variable then directly impacts

the bid factor defined using some function 𝑓 . That is, for 𝑖 ∈ I𝑡 ,
the campaign 𝑘 posts bid of the following form 𝑏𝑖,𝑡 = 𝑓 (𝜇𝑘,𝑡 ) · 𝑣𝑖,𝑡 .
Note that here, under the PID controller defined in (3), our control

variable 𝜇𝑘,𝑡 would increase if our realized spend 𝑧𝑘,𝑡 at round 𝑡

exceeds our ideal budget 𝜌𝑘,𝑡𝐵𝑘 , and decrease vice versa. Hence,

𝑓 should be a decreasing function such that the campaign would

decrease its bid if it overspends, and increase its bid otherwise.

In reality, a number of choices of 𝑓 can be potentially adopted. In

Table 4 we test the performance of the PID controller under a variety

of definitions of the bid factor 𝑓 (𝜇). We observe that different

forms of the bid factor 𝑓 (𝜇) would prioritize different metrics (for

example, exp(−𝜇) appears to be the best in terms of reducing pacing

error, while 1/(1 + 𝜇), the bid factor we adopt in AdaptivePacing,
performs best in increasing number of impressions and clicks and

surface rate as well as reducing cost-per-click for advertisers.

𝑓 (𝜇 ) Imps Clks Rev CTR CPC SR PE

−1/5𝜇 + 1 4.31% 4.03% -1.43% -0.29% -5.17% 2.47% -32.07%

exp(−𝜇 ) 5.47% 4.55% -2.31% -0.81% -6.49% 4.66% -38.17%

1/(1 + 𝜇 ) 5.99% 5.52% -1.85% -0.33% -7.05% 5.84% -22.28%

Table 4: Performance of dual-based PID controllers.

PID controllers, despite their wide adoptions, often lack clar-

ity in choices of their bid functions and control variable updates.

Therefore, establishing the connection between the PID controller

approach and AdaptivePacing is valuable in that it allows us to ex-

tend all of the theroetical insights established for AdaptivePacing
and its optimization framework to PID controller-based approaches.

4.2.2 Comparison of Budget Pacing Approaches under dif-
ferent spending curves. We conclude our experiment section

by comparing the spending curves achieved by different types of

budget pacing approaches.

Recall from our discussion in Sections 2.3 and 4.1.1 that by tun-

ing the target spending curve, captured by 𝜌𝑘,𝑡 , the campaigns that

adopt AdaptivePacing can choose the target spending curve best

suited to their need, such as the traffic curve or the uniform spend-

ing curve. Given our discussion in Section 4.2.1, since the PID con-

troller can be considered as an extension to the AdaptivePacing
method, it can also adapt to different target expenditure curves
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Figure 1: Spending curve of the top campaign under different

budget pacing methods. The reference rate has been rescaled

according to the target spending curve (left: traffic curve;

right: uniform spending curve).

(recall from (7) that the error term 𝑔𝑡 directly depends on 𝜌𝑘,𝑡 ). On

the contrary, the Throttling method from [19], primarily targets

the uniform spending curve and does not have a mechanism that

adapts to various spending curves.

In Figure 1, we compare the spending patterns for the top cam-

paign (the campaign with the highest number of clicks), under

no-pacing, AdaptivePacing, Throttling and the PID controller

respectively. We also let AdaptivePacing and the PID controller

adopt two different target spending curves—the traffic curve and the

uniform spending curve. Under no-pacing, this campaign would

deplete its budget early in the horizon and miss out on all op-

portunities later on. We observe that since Throttling mainly

encourages uniform spending, it performs well in helping the cam-

paign achieve uniform spending, yet cannot adapt well when the

campaign would like its spending to follow the traffic curve. Both

AdaptivePacing and the dual-based PID controller (which is an ex-

tension of AdaptivePacing), on the other hand, shows outstanding
performance in aligning the spending pattern of the top campaign

to its target, whether the target spending curve is the traffic curve or

the uniform spending curve. Given that the PID controller extends

directly from AdaptivePacing, it usually aligns slight more closely

with the target spending curve compared to AdaptivePacing. That
being said, the performance of AdaptivePacing is already excel-

lent as seen from Figure 1, which again validates the efficacy of

AdaptivePacing in our real-world system.

5 CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we investigate the effectiveness of an optimization-

based budget pacing strategy, and its many variants, in the context

of eBay’s sponsored search environment. By leveraging an optimiza-

tion framework, we are able to integrate theoretical insights and

enhance the bid shading methodology, thereby aligning it with both

the commercial objectives of the platform and the specific goals

of advertisers and their campaigns. The transition from heuristic-

driven to theory-informed budget pacing practices holds promise

for transforming operational strategies across various sectors, fos-

tering a more robust and equitable advertising ecosystem.

For future research, there are a few promising directions to

pursue. We could incorporate additional business-centric or user-

centric elements into our model, including return on investment

(ROI) considerations and long-term customer value constraints.

Another prospective avenue is the integration of cross-channel

marketing effects, where budget pacing can be optimized not only

within a single sponsored search program but also across multiple

advertising channels for holistic campaign performance.
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A COMPARISONWITH THROTTLING

As discussed in Section 1, budget pacing approaches are generally

categorized as either throttling, which allows campaigns to join auc-

tions probabilistically, or bid shading, which modifies the bid value

for ad allocation. In practice, most budget pacing methods can be

implemented in either manner. Throttling, often considered more

favorable for emerging ad platforms, is a cruder method that sup-

ports system triage. Moreover, advertisers have shown a preference

for throttling over bid-altering approaches in sponsored search [14].

Previous research [19] has demonstrated the system-level benefits

of various throttling approaches in the context of eBay sponsored

search, albeit without extensive theoretical backing.

Throttling approaches can further be categorized based on the

information they utilize, which includes budget reset at different

times (strategically resetting the budget to maximize competition),

remaining budget-based approaches [18], remaining budget and

time-based approaches [14], and remaining ad impressions and

clicks-based approaches [14]. Throttling-based budget pacing meth-

ods often compromise the impressions of ad campaigns to enhance

overall competition, often achieved by reducing impressions, espe-

cially earlier in the horizon. However, there are minimal guarantees

regarding the availability or quality of future ad opportunities.

In this section, we consider two different throttling approaches:

(1) Throttling: the throttling approach based on remaining bud-

get and time introduced in [14], which is shown to be the most

effective among a number of throttling approaches considered

by [19], specifically in the test bed of eBay sponsored search; (2)

AdaptiveThrottling: a throttling method that directly uses the

bid multiplier we establish for AdaptivePacing, i.e., 1/(1 + 𝜇𝑘,𝑡 ),
as the probability that a campaign would join an auction.

We evaluate the performance of the two throttling approaches

via the test bed described in Section 3.1, and compare the metrics

attained by throttling against those of AdaptivePacing in Table

5 below. From Table 5, we observe that AdaptivePacing outcom-

petes Throttling and AdaptiveThrottling in almost all of the

key business metrics, such as the number of impressions/clicks, sur-

face rate, CPC, etc. (See, also, Appendix B for illustrations that com-

pare AdaptivePacing with Throttling.) The only metric where

throttling based approaches excel is the pacing error, which can

gets reduced by as much as 50%. However, as we discussed in Sec-

tion 4.1.1, this is achieved at the expense of other vital metrics.

For instance, both throttling methods would lead a decrease in the

number of impressions/clicks and the surface rate even compared

to no-pacing, which can be less favorable to both the platform and

the advertisers.

It is also noteworthy that that the bid multiplier 1/(1 + 𝜇𝑘,𝑡 ) in
AdaptivePacing fails to yield satisfying performance when it is

used as a throttling threshold in AdaptiveThrottling. Such result

aligns with previous findings in [1, 19].

Table 5: Performance of AdaptivePacing, Throttling and

AdaptiveThrottling.

Method Imps Clks Rev CTR CPC SR PE

AdaptivePacing 6.21% 5.48% -5.39% -0.50% -10.20% 6.01% -18.72%

Throttling -0.45% -1.10% -1.89% -0.88% -0.28% -7.76% -51.62%

AdaptiveThrottling -0.28% -2.63% -3.11% -2.14% -0.08% -9.14% -20.96%

B ILLUSTRATIONS OF BUSINESS METRICS

In this section, we illustrate how AdaptivePacing impacts our key

business metrics, stated in Section 3.2. In Figure 2, we plotted the

evolution of number of impressions (Imps), number of clicks (Clks),
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total ad revenue (Rev), the average click-through rate (CTR), the

average cost-per-click (CPC), and the surface rate (SR) of cam-

paigns in the sponsored search program throughout the day. We

compare the business metrics under no-pacing, Throttling (see
Appendix A and [19] for a description of this throttling method)

and AdaptivePacing. Note that to preserve sensitive information,

all of the plots presented in this section have been detrended and

the numerical values have been omitted.
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Figure 2: Evolution of business metrics under no pacing,

Throttling and AdaptivePacing. All plots are detrended.

Figure 2 illustrates the distinct strategies of Throttling and

AdaptivePacing for budget pacing. Throttling paces budgets by

reducing a campaign’s probability of entering auctions early in the

horizon, conserving funds for later use. Conversely, AdaptivePacing
employs bid shading to moderate bid amounts based on a cam-

paign’s spending pace, rather than restricting auction participa-

tion. This method ensures campaigns can capitalize on available

spending opportunities. This contrast in strategies is highlighted

in Figures 2a, 2b, and 2f, where Throttling appears to limit early-

day exposure to reserve funds for potential impressions or clicks

later in the day. In contrast, AdaptivePacing provides a more bal-

anced spending approach throughout the day. It is surprising to see

that in terms of key metrics such as number of impressions/clicks

and the surface rate, AdaptivePacing strictly dominates no-pacing

throughout the horizon.

Further, Figure 2e reveals that while Throttling has a negli-

gible impact on cost-per-click (CPC), AdaptivePacing effectively
lowers the CPC through its bid shading mechanism in a second-

price auction setting. This reduction in CPC enables campaigns to

secure more impressions or clicks and simultaneously increases the

advertisers’ net utility per click.

All of the experiment results above reinforce the premise that

bid shading approaches like AdaptivePacing, as suggested by its

optimization-based framework, contributes significantly to maxi-

mizing advertisers’ utility. These complement the theoretical results

established previously in a similar vein (see Theorem 4.3 in [2]).
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