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ABSTRACT
Applications involving Extreme Multi-Label Classification (XMLC)
face several practical challenges with respect to scale, model size
and prediction latency, while maintaining satisfactory predictive
accuracy. In this paper, we propose a Multi-Label Factorization
Machine (MLFM) model, which addresses some of the challenges
in XMLC problems. We use behavioral ad targeting as a case study
to illustrate the benefits of the MLFM model. Predicting user qual-
ifications for targeting segments plays a major role in both per-
sonalization and real-time bidding. Considering the large number
of segments and the prediction time requirements of real-world
production systems, building scalable models is often difficult and
computationally burdensome. To cope with these challenges, we (1)
reformulate the problem of assigning users to segments as a multi-
label classification (XMLC) problem, and (2) leverage the benefits
of the conventional FM model and generalize its capacity to joint
prediction across a large number of targeting segments. We have
shown that the MLFM model is both effective and computationally
efficient compared to several baseline models on publicly available
datasets in addition to the targeting use case.

CCS CONCEPTS
• Computing methodologies→ Factorization methods; Su-
pervised learning by classification; • Information systems→
Display advertising; Recommender systems.
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1 INTRODUCTION
An increasing number of web-based applications such as content
recommendation, personalization, information retrieval, shopping
and advertising, utilize the power of machine learning to improve
user experience. Many of these applications require assigning 𝐿

target labels (y ∈ {0, 1}𝐿) for a given data point simultaneously,
referred to asMulti-Label Classification.

Typically, one or more binary classification models are used,
each responsible for predictions on their respective labels. Alterna-
tively, a single model can be used to learn and infer the predictions
across all labels. Though using multiple binary classifiers, typically
in a one-vs-all (OVA) setting, is more prevalent, such a classifica-
tion scheme has certain limitations in terms of scale, accuracy and
maintainability, as we shall discuss shortly. These limitations are
magnified in applications that deal with a large number of classes,
referred to as Extreme Multi-Label Classification (XMLC, XMC,
or XC) tasks [3, 4, 28, 51]. However, many XMLC methods have
their limitations too.

Factorization Machines (FM) [42] have shown to perform well on
tasks involving complex relationships in data, with low latency. We
propose aMulti-Label FactorizationMachine (MLFM) (see Section 3)
to leverage the benefits of conventional FMs to address some of the
challenges in extreme multi-label classification. We use behavioral
ad targeting as a case study. We also demonstrate the effectiveness
of our approach on several public benchmark datasets (Section 4).

https://doi.org/10.1145/3580305.3599822
https://doi.org/10.1145/3580305.3599822
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Behavioral Ad Targeting [13, 32, 53], also known as inter-
est targeting or audience targeting, groups users into segments
based on the users’ behaviors or interactions such as pages visited,
searches performed, and links clicked. Along with other mecha-
nisms like demographic and geographic targeting, behavioral tar-
geting is used by advertisers for customizing display advertisements
so as to reach appropriate users (also referred to as customers or
audiences). For each incoming ad request, an ad server identifies
the correct set of segments corresponding to the user behind the
request. This set of segments is then used to select a set of potential
advertisements, the best among which will be displayed to the user.

A single user can belong to multiple segments at the same time.
For instance, a user can belong to segments corresponding to topics
such as owning a pet, applying for a loan, pursuing a part-time
degree, and taking their family on a vacation to a theme park. As
a result, the number of segments can be large, even up to a few
thousand, depending on the advertising company.

Challenges: Ad targeting and other web applications pose the
following challenges, and our model, MLFM, is designed to address
them. These challenges are not independent and often influence the
design decisions when building an end-to-end machine learning
system.

Large Number of Segments. Building a scalable model to handle
a large number of segments is demanding. Using multiple binary
classifiers to address this problem requires generating an individ-
ual dataset and tuning hyperparameters for each of the 𝐿 models,
whereas a single multi-label model can be excessively large and
computationally expensive. An ideal solution should be scalable
without compromising prediction accuracy.

Low Prediction Latency. Prediction latency can affect batch pre-
dictions, near real-time and real-time applications. Lower latency
ensures timely generation of predictions in both batch and near
real-time use cases. Many large-scale real-time prediction systems
rely on linear models such as logistic regression in order to meet
service-level agreements (SLAs) on latency, which are typically in
milliseconds. More complex models can be computationally expen-
sive, both in space utilization and in time complexity.

Relationship Among Segments. Utilizing multiple binary classi-
fiers, one for each label, or even using one-vs-all (OVA) classifiers
assumes that both the labels (or segments), and the data points can
be treated independently. The labels can either be related explic-
itly (in case of interest hierarchies [18, 54]), or implicitly, when
they have latent relationships [11, 49]. Further, these between-label
relationships and the similarity among the data points make the
selection of negative examples more complex when using multiple
binary classifiers.

(Near) Real-time Prediction.Most approaches in the industry rely
on offline batch predictions, which are based on historical user
behavior data. Such models are often trained periodically, using
features or user activities available up to the day of training, and an
offline scoring procedure assigns the labels for each user. However,
users’ interests are dynamic and even a single page visit or purchase
can be indicative of their subsequent behavior. As a result, a real-
time or a near-real-time scoring procedure can leverage a user’s
latest activities to assign an updated interest segment to that user.
User history is often limited either because a user is new to the
network, or due to various privacy rules including the General Data

Protection Regulation (GDPR) and browser/device restrictions. In
such cases, (near) real-time prediction would help. Namely, real-
time targeting is used for demographic and interest prediction, and
recently, contextual targeting is gaining traction across the industry.
However, accuracy of prediction at scale remains a challenge.

Contributions: We summarize our contributions as follows:
• We generalize the applicability of FM models to extreme multi-
label classification (XMLC) problems, particularly to ad targeting
problems involving a large number of targeting segments, which
are inherently XMLC problems.
• We propose an alternative lightweight formulation of the multi-
label FM model that allows for capturing pairwise feature and
field interactions (which would conventionally require quadratic
time complexity) in asymptotically linear time w.r.t. the number
of features (or fields in the case of multi-field categorical data).
Since less operations are required to project each feature/field
onto a single label, a larger number of labels can be processed.
• We conduct extensive experiments to demonstrate the effective-
ness and computational efficiency of MLFM in comparison with
several multi-label classification baselines on both publicly avail-
able benchmarks and proprietary targeting datasets.

2 BACKGROUND
Considering the large number of targeting segments, the prob-
lem of assigning multiple segments to a user’s record can also
be approached from an extreme multi-label classification perspec-
tive. The objective of extreme multi-label classification (XMLC)
is to build classifiers capable of automatically assigning a data
point the most relevant subset of labels from an extremely large
set of possible class labels [4]. To that end, a plethora of XMLC
approaches have been proposed over the years, that can be catego-
rized into three main categories: one-vs-all classifiers, tree-based
methods and embedding-based methods. Although one-vs-all clas-
sifiers [2, 34, 55, 56] are quite common in the literature, most of
them ignore feature interactions and learn feature weights w.r.t.
each label separately without sharing any weights among the labels.
Tree-based methods [1, 19, 20, 38–40], on the other hand, partition
the feature and/or label space instead of explicitly capturing feature
interactions and their associations with the labels. Finally, label
embedding-based methods [5, 24, 33, 41, 50, 52] utilize label sparsity
to learn compressed label embeddings and thus reduce the infer-
ence time in the compressed space. However, the predicted labels
would also need to be projected back into the original label space
at an additional cost.

In this work, we focus on approaches from the first two cate-
gories as such approaches are directly applicable to our time-critical
targeting use case for which embedding-based methods may not
be well suited considering their computational complexity.

Furthermore, our work focuses specifically on multi-label tabular
numerical/categorical data, for which Factorization Machine (FM)
models are particularly suitable. XMLC approaches have been ap-
plied to other data types, such as text, in various domains including
document tagging [6], product recommendation [8, 58], natural
language modeling [21], among others. In Appendix A (Section
A.2), we discuss the main aspects in which our work conceptually
differs from such approaches.
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Table 1: Model equations of first and second-order models.

Model Model equation Notation

Logistic Regression (LR)
[16, Chap. 4.4, p. 119–128] 𝑤0 +

𝐷∑︁
𝑖=1

𝑤𝑖𝑥𝑖 (1) 𝑤0 – bias term;
𝑤𝑖 – weight of feature 𝑥𝑖 , ∀𝑖 = 1, . . . , 𝐷.

Degree-2 Polynomial
Mapping (Poly2) [9] 𝑤0 +

𝐷∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗 (2) 𝑤𝑖 𝑗 – weight of interaction between
features 𝑥𝑖 and 𝑥 𝑗 .

Factorization Machine
(FM) [42] 𝑤0 +

𝐷∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1
⟨v𝑖 , v𝑗 ⟩𝑥𝑖𝑥 𝑗 (3) v𝑖 , v𝑗 – embeddings for features 𝑖 and 𝑗 ;

⟨·, ·⟩ – dot product operator.

Field-aware Factorization
Machine (FFM) [22, 23] 𝑤0 +

𝐷∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1
⟨v𝑖𝐹 ( 𝑗 ) , v𝑗𝐹 (𝑖 ) ⟩𝑥𝑖𝑥 𝑗 (4) v𝑖𝐹 ( 𝑗 ) – embedding used for 𝑥𝑖 to interact

with any 𝑥 𝑗 from field 𝐹 ( 𝑗) ≠ 𝐹 (𝑖).

Field-weighted Factorization
Machine (FwFM) [37] 𝑤0 +

𝐷∑︁
𝑖=1
⟨v𝑖 ,w𝐹 (𝑖 ) ⟩𝑥𝑖 +

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1

𝑟𝐹 (𝑖 )𝐹 ( 𝑗 ) ⟨v𝑖 , v𝑗 ⟩𝑥𝑖𝑥 𝑗 (5) 𝑟𝐹 (𝑖 )𝐹 ( 𝑗 ) – between-field interaction weight;
w𝐹 (𝑖 ) – embedding vector for field 𝐹 (𝑖).

2.1 Problem Formulation
Consider a dataset with 𝐷̂ different fields {𝐹1, 𝐹2, . . . , 𝐹𝐷̂ } such that
a feature 𝑓𝑖 belongs to one and only one field 𝐹 (𝑖). Let x be a one-hot
encoded feature vector [𝑥1, . . . , 𝑥𝐷 ] from that dataset. Only one
feature 𝑥𝑖 in x can be active (i.e. present, or non-zero) per field 𝐹 (𝑖).

For example, in ad targeting, a field 𝐹 𝑗 = “country” could take
values 𝑓𝑖 ∈ {AU, BR, CA, FR, GR, US, ...}. Further, x is associated
with a vector of binary labels y ∈ {0, 1}𝐿 , where 𝑦𝑙 = 1 if label 𝑙 is
active for x and 𝑦𝑙 = 0 otherwise. Note that multiple labels can be
active for x. For instance, in ad targeting, each label 𝑦𝑙 indicates
whether or not the user behind an ad request x qualified for a target-
ing segment 𝑙 . The objective is to learn a function 𝜙 : R𝐷 → R𝐿 that
maps an example x to a probability vector [𝑃 (𝑦1 |x), . . . , 𝑃 (𝑦𝐿 |x)].

2.2 Preliminaries
Let us focus on a special case of the multi-label classification prob-
lem described in Section 2.1 when 𝐿 = 1. This boils down to the
binary classification problem of modeling the probability for a single
class label 𝑦, given an example x, as

𝑃 (𝑦 |x) = 𝜎 (𝜙 (x)) = 1
1 + 𝑒−𝜙 (x)

, (6)

where 𝜙 : R𝐷 → R. The following describes several approaches to
estimating Eq. (6) that are related to and predecessors of the model
presented in this work.

Arguably among the most conventional approaches to address-
ing the binary classification problem would be to build a Logistic
Regression (LR) model that learns a weight for each feature of x
and takes a linear combination of the features and their associated
weights (refer to Eq. (1)).

Although simple and lightweight, a linear classification model
such as LR has a limited modeling capacity since it ignores any
interactions between individual features that might be relevant
to predicting the class label 𝑦. Thus, one can include additional
so-called cross features by considering all pairs of the original fea-
tures, and apply a Degree-2 Polynomial Mapping (Poly2) [9] to

learn a weight for each feature pair as shown in Eq. (2). However,
this automatically introduces substantial computational overhead,
particularly when the number of features is large. For example, in
the use case presented in this work where 200,000 features are used,
weights for billions of feature pairs would need to be learnt.

As a response to the limitation of Poly2, the FM model [42]
(refer to Eq. (3)) was designed to learn high-quality estimates of
feature interaction strengths by factorizing the interaction weights
as𝑤𝑖 𝑗 = ⟨v𝑖 , v𝑗 ⟩ while requiring less memory and computational
time. Also, FMs have outperformed Poly2 in various applications
involving sparse categorical data, as suggested in [37].

To capture the behavior of a feature when it interacts with fea-
tures from other fields different than its own field, the original FM
has been extended to a Field-aware Factorization Machine (FFM)
[23]. This is accounted for in FFMs (Eq. (4)) by learning a separate
embedding vector, v𝑖𝐹 ( 𝑗 ) , for each (𝑥𝑖 , 𝐹 ( 𝑗)) pair such that v𝑖𝐹 ( 𝑗 ) is
used to calculate the strength of the interaction between the feature
𝑥𝑖 and any other feature 𝑥 𝑗 from field 𝐹 ( 𝑗) ≠ 𝐹 (𝑖).

As stressed in [37], despite the improvements of FFMs over con-
ventional FMs, the large number of model parameters makes them
inapplicable in real-world production systems. Therefore, to reduce
the complexity of FFMs, Pan et al. [37] proposed to model field-
level interactions 𝑟𝐹 (𝑖 )𝐹 ( 𝑗 ) as presented in Eq. (5). The interaction
weights of different field pairs eliminate the need for learning 𝐷̂ − 1
different embedding vectors v𝑖𝐹 ( 𝑗 ) for each feature 𝑖 , thus making
the Field-weighted Factorization Machine (FwFM) a competitive
and memory-efficient extension of FFM.

Since FwFM was initially designed for binary classification and
applied to click-through rate prediction in [37], the same authors
have generalized the FwFM formulation in [36] to multi-task set-
tings. Nevertheless, they applied their model to predicting four
different types of conversions by treating each conversion type as a
separate task. Moreover, in their setting, only one conversion type
can be active per data point, thus making the four tasks mutually
exclusive; which is characteristic of multi-class as opposed to multi-
label problems where the class labels are mutually non-exclusive.
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In Section 3, we demonstrate that the generalization of FwFM
can be adapted to problems involving a large number of mutually
non-exclusive class labels (e.g., thousands of labels where multi-
ple labels can be active per data point). In addition, we propose
an alternative lightweight formulation that can further reduce the
model’s computational time, which can be of considerable impor-
tance in time-critical settings such as those of the targeting use
case presented in this work.

For the reader’s reference, the model equations of the afore-
described approaches are provided in Table 1.

3 MULTI-LABEL FACTORIZATION MACHINE
In the following, we provide a formal description of the Multi-Label
Factorization Machine (MLFM) model aimed to address the problem
formulated in Section 2.1, and propose an alternative formulation
that allows for reducing the model’s original time complexity.

Feature Embedding. First, a feature embedding lookup is cre-
ated in which every feature, representing a binary random variable
𝑓𝑖 from a vocabulary 𝑆𝑓 𝑒𝑎𝑡 = {𝑓1, 𝑓2, . . . , 𝑓𝐷 }, is assigned an em-
bedding v𝑖 ∈ R𝑀 such that 𝑀 ≪ 𝐷 . The values of the feature
embeddings are initialized to random uniform values and a map-
ping 𝑔 : 𝑆𝑓 𝑒𝑎𝑡 → R𝑀 is used to retrieve the embedding v𝑖 = 𝑔(𝑓𝑖 )
of the feature 𝑓𝑖 .

Multi-Label Modeling. In order to handle a large number of
features, we solely consider second-degree feature interactions. The
decision function 𝜙 (x) of a second-degree MLFM is defined as:

w0 +
[
𝐷∑︁
𝑖=1

𝑤𝑙
𝑖𝑥𝑖

]𝐿
𝑙=1
+


𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1

𝑟 𝑙
𝐹 (𝑖 )𝐹 ( 𝑗 ) ⟨v𝑖 , v𝑗 ⟩𝑥𝑖𝑥 𝑗


𝐿

𝑙=1

, (7)

where w0 ∈ R𝐿 is a bias vector, W = [𝑤𝑙
𝑖
]𝐷×𝐿 are the feature

weights over 𝐿 class labels; 𝐹 (𝑖) and 𝐹 ( 𝑗) denote the fields that fea-
tures 𝑥𝑖 and 𝑥 𝑗 belong to, respectively, thus R = [𝑟 𝑙

𝐹 (𝑖 )𝐹 ( 𝑗 ) ]𝐷̂×𝐷̂×𝐿 ;
and V = [𝑣𝑖𝑚]𝐷×𝑀 is the feature embedding matrix shared among
all labels. ⟨v𝑖 , v𝑗 ⟩ represents the dot product between the embed-
dings of two features, for each 𝑖, 𝑗 = 1, . . . , 𝐷 . This extends the ca-
pacity of the linear formulation given by the first two terms in Eq. (7)
and allows for modeling between-feature as well as between-field
interactions. Also, note that instead of using a separate parameter
for each feature interaction w.r.t. each label (not to be confused with
the 𝑟 𝑙

𝐹 (𝑖 )𝐹 ( 𝑗 ) parameters that model field interactions), the feature
interactions are modeled by factorizing the interaction strengths
𝑤𝑖 𝑗 ,∀𝑖, 𝑗 = 1, . . . , 𝐷 (shared among all labels). This is one of the
central advantages of FMs which aids in obtaining high-quality
estimates of feature interaction strengths even when dealing with
considerably sparse features, as in our targeting use case.

Parameter Learning.Given a labeled dataset {(x𝑛, y𝑛)}𝑁𝑛=1, the
categorical cross-entropy loss for the 𝑛th data point is calculated as

ℓ (x𝑛, y𝑛) = −
1
𝐿

(
𝐿∑︁
𝑙=1

𝑦𝑛𝑙 (log(𝑝𝑛𝑙 )) + (1 − 𝑦𝑛𝑙 ) (1 − log(𝑝𝑛𝑙 ))
)
,

(8)
where 𝑝𝑛𝑙 = 𝑃 (𝑦𝑛𝑙 |x𝑛) = 1/(1 + 𝑒−𝜙𝑙 (x𝑛 ) ). Note that a sigmoid
function is used to obtain the class probabilities instead of a softmax
function since a data point might be assignedmultiple labels. Finally,
starting from randomly initialized parameter values, the optimal

model parameters w0, W, R, V are determined by minimizing the
loss calculated over all data points 1

𝑁

∑𝑁
𝑛=1 ℓ (x𝑛, y𝑛).

Space and Time Complexity. The MLFM model has a space
complexity of O(𝐿+𝐿𝐷+𝐿𝐷̂ (𝐷̂−1)/2+𝐷𝑀) and a time complexity
of O(𝐷2𝑀 + 𝐷2𝐿), where 𝐷 is the number of features, 𝐷̂ is the
number of fields (or number of active features), 𝑀 is the feature
embedding dimension, and 𝐿 is the number of labels.

Lightweight Formulation. As one may notice, the interaction
term in Eq. (7) is quadratic with respect to 𝐷 . In the following,
we propose an alternative formulation of Eq. (7) in which we de-
compose the between-feature interaction term such that it can be
computed in linear time with respect to the number of features 𝐷 .
First, we factorize the field interactions 𝑟 𝑙

𝐹 (𝑖 )𝐹 ( 𝑗 ) as follows:

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1
⟨u𝑙

𝐹 (𝑖 ) , u
𝑙
𝐹 ( 𝑗 ) ⟩⟨v𝑖 , v𝑗 ⟩𝑥𝑖𝑥 𝑗

=

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1

(
𝐻∑︁
ℎ=1

𝑢𝑙
𝐹 (𝑖 )ℎ𝑢

𝑙
𝐹 ( 𝑗 )ℎ

) (
𝑀∑︁

𝑚=1
𝑣𝑖𝑚𝑣 𝑗𝑚

)
𝑥𝑖𝑥 𝑗

=

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1

(
𝐻∑︁
ℎ=1

𝑀∑︁
𝑚=1

(
𝑢𝑙
𝐹 (𝑖 )ℎ𝑢

𝑙
𝐹 ( 𝑗 )ℎ

) (
𝑣𝑖𝑚𝑣 𝑗𝑚

))
𝑥𝑖𝑥 𝑗

=

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=𝑖+1

(
𝐻∑︁
ℎ=1

𝑀∑︁
𝑚=1

(
𝑢𝑙
𝐹 (𝑖 )ℎ𝑣𝑖𝑚

) (
𝑢𝑙
𝐹 ( 𝑗 )ℎ𝑣 𝑗𝑚

))
𝑥𝑖𝑥 𝑗 ,

(9)

where u𝑙
𝐹 (𝑖 ) , u

𝑙
𝐹 ( 𝑗 ) ∈ R

𝐻 . For simplicity, let us organize the latent

feature and field factors into two𝐻×𝑀 matrices,Q𝑙
𝑖
= [𝑢𝑙

𝐹 (𝑖 )ℎ𝑣𝑖𝑚]
𝐻,𝑀

ℎ=1,𝑚=1
and Q𝑙

𝑗
= [𝑢𝑙

𝐹 ( 𝑗 )ℎ𝑣 𝑗𝑚]
𝐻,𝑀

ℎ=1,𝑚=1. Now, the above expression can be
rewritten as
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where the operator ⟨·, ·⟩F computes the Frobenius inner product
between two matrices; and q𝑙

𝑖
= vec(Q𝑙

𝑖
), q𝑙

𝑗
= vec(Q𝑙

𝑗
).

Following [42, Lemma 3.1], we further expand Eq. (10) as follows:
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(11)

The above equation is linear in terms of the number of features 𝐷
and the dimensions of the feature and field embeddings (𝑀 and 𝐻 ),
that is O(𝐷𝑀𝐻 ). Considering all 𝐿 labels, the complexity becomes
O(𝐿𝐷𝑀𝐻 ). Substituting the reformulated expression from Eq. (11)
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into the original formulation (Eq. (7)) yields
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(12)
Note that, in the above formulation, 𝐻 is of the same order of
magnitude as𝑀 or lower and, in practice, 𝐻 and𝑀 can be chosen
such that 𝐻,𝑀 ≪ 𝐷 . Moreover, for sparse multi-field categorical
data, where typically 𝐷̂ ≪ 𝐷 , the total complexity O(𝐷𝐿 +𝐿𝐷𝑀𝐻 )
can be further reduced to O(𝐷̂𝐿 + 𝐿𝐷̂𝑀𝐻 ) ≈ O(𝐿𝐷̂𝑀𝐻 ).

For more details on the implementation of MLFM, the reader is
referred to Section A.1.

4 EXPERIMENTS
The MLFM model is aimed to provide a satisfactory classification
performance with the lowest inference time possible and a reason-
able memory footprint. To that end, we first compared MLFM with
baseline models widely used in XMLC problems on standard bench-
mark datasets. The findings from the experiments discussed in
Section 4.3 suggest that MLFM provides the best trade-off between
classification performance and inference time when compared to
both one-vs-all and XMLC baseline models. Consequently, we apply
MLFM to behavioral targeting datasets (Section 4.4).

4.1 Baselines
Conventional OVA Classifiers. The MLFM model was compared
against three One-vs-All (OVA) classifiers: (1) an OVA scheme that
leverages a separate logistic regression (LR) model [16, Chap. 4.4, p.
119–128] for each label, (2) an OVA-LinSVM model having Support
Vector Machines (SVMs) [17, 27, 43] with linear kernels as its base
classifiers, and (3) an OVA variant of Multi-Layer Perceptron (MLP).
XMLC Approaches. Tree ensemble-based methods for extreme
multi-label classification (XMLC) were also considered as additional
baselines. Such models include: FastXML [40], PfastreXML [19] and
Parabel [39].

4.2 Experimental Setup
MLFM was trained on batches of 32 data points each, for 10 epochs,
using AdamW [29] (a variant of Adam [25] with decoupled weight
decay) with a learning rate of 0.01. The baseline models were run
with their respective default hyperparameter settings; OVA-MLP
was trained with 10 hidden dimensions. Throughout all experi-
ments, the feature embedding dimension𝑀 was set to 10. We eval-
uated MLFM under various values of 𝑀 , ranging from 10 up to
100, and did not observe a significant change in its predictive per-
formance. Higher values of 𝑀 impacted the performance on rare
classes only, positively in some cases and adversely in others (refer
to Section 4.4.3 for more details).

MLFM and the linear OVAmodels were implemented in Python 3
(with additional usage of PyXCLib1) and PyTorch 1.6.0 with CUDA
toolkit 10.1, and were run on a machine with 640 GB of memory, 48
CPUs and one NVIDIA Tesla V100 GPU. The inference procedure
of MLFM was implemented in Java using the EJML library 2. For

1https://github.com/kunaldahiya/pyxclib
2http://ejml.org

the XMLC ensemble baselines, their original C++ implementations
from [4] were used, some of which are multi-threaded.

The multi-label classification performances of MLFM and the
baseline models (listed in Section 4.1) were measured with respect
to each label using the well-established performance indicator of
area under the ROC curve (AUC) [15, 31]. To obtain a measure for
the overall performance of the models, each model’s AUCs were (1)
macro-averaged over all labels and (2) summarized in a stratified
manner similar to [36]:

StratifiedAUC =

∑𝐿
𝑙=1 𝑁𝑙 · AUC𝑙∑𝐿

𝑙=1 𝑁𝑙

, (13)

where the AUC value measured for label 𝑙 is weighted by the label’s
frequency of positive examples, 𝑁𝑙 =

∑𝑁
𝑛=1 𝑦𝑛𝑙 .

Note that metrics such as nDCG@k and Precision@k, which are
commonly used in the XMLC community, were not considered in
this work since we approach the problem formulated in Section 2.1
from a standard multi-label classification perspective rather than a
ranking perspective.

4.3 Experiments on Public Datasets
4.3.1 Data Description. The classification performances of MLFM
and the baseline models were evaluated on three publicly available
benchmark datasets from different domains, of different sizes and
characterized by different levels of feature and label sparsity. A
brief description of each dataset is provided in the following.
MediaMill Challenge Dataset. As a part of the multimedia in-
dexing challenge posed in [46], static video frames were extracted
from the multimedia archive of the TRECVID benchmark [44, 45].
For the purposes of further indexing, a total of 43,907 frames (or
single camera shots) were manually assigned labels representing
concepts related to program categories, setting, people, objects,
activities, events, and graphics. A visual feature extraction based on
color-texture histograms was applied to generate a 120-dimensional
representation of each key frame. Given such a representation of
a key frame, the task is to select only the concepts relevant to the
frame from a lexicon of 101 predefined concepts.
ReutersCorpusVolume I.This archive consists of roughly 800,000
manually categorized newswire stories made available by Reuters,
Ltd. Each newswire article is represented by 47,236 bag-of-words
features corresponding to stemmed unique terms; and tagged with
multiple category codes from a set of 2456 possible codes related to
topics, industries or regions. That being said, the classification task
is to categorize the articles into their relevant categories.
EURLex. The EURLex dataset represents a collection of 51,000 legal
documents about European Union law. Each document is repre-
sented by a term-frequency vector encoding 200,000 unique tokens.
Moreover, the documents are of different types such as treaties,
legislations, case-law and legislative proposals; and are annotated
using different orthogonal categorization schemes [30]. Consid-
ered the most important among the schemes is EuroVoc, a topic
hierarchy with almost 4271 categories regarding different aspects
of European law. Hence, given a document, the classification task
in focus is to classify a document into its corresponding EuroVoc
concept categories.
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Table 2: Public datasets’ statistics.

Dataset Features
𝐷

Labels
𝐿

Train Test Records/
label

Labels/
record

MediaMill 120 101 30,993 12,914 1902.15 4.38
RCV1 47,236 2,456 623,847 155,962 1218.56 4.79
EURLex 200,000 4,271 45,000 6,000 60.57 5.07

For the public datasets described above, we used their predefined
training and test sets from [4]. The descriptive statistics of each
dataset are provided in Table 2.

4.3.2 Multi-Label Classification Performance. The test classifica-
tion performances of all models were evaluated in terms of macro-
average and stratified AUC. The results are summarized in Table 3.

It can be observed that the XMLC tree-based methods (FastXML,
PfastreXML and Parabel) generally outperform the OVA classifiers
with respect to both macro-average and stratified AUC, and across
all three datasets. The only exception to this observation is the
performance of OVA-MLP on the EURLex dataset where OVA-MLP
is more accurate than FastXML and Parabel; yet its performance
is still surpassed by that of PfastreXML which is consistently the
best-performing method among the XMLC baselines.

Nevertheless, MLFM exhibits either better or at least comparable
performance to those of the OVA baselines as well as the XMLC
methods which are particularly designed to deal with large label
spaces. More specifically, on the MediaMill dataset, MLFM yields
lifts in macro AUC (starting from 1% up to 33.7%) as well as in strat-
ified AUC (ranging between 1.7% and 33%). A similar behavior is
observed on the EURLex dataset on which MLFM attains improve-
ments of 3.3%-18.9% in macro AUC and corresponding stratified
AUC improvements of 1.1%-23.7%; despite the drastically larger fea-
ture and label space. As for RCV1, MLFM demonstrates runner-up
performance, standing next to PfastreXML in terms of macro AUC,
with negligible difference to PfastreXML’s stratified AUC.

4.3.3 Computational Efficiency. The inference run times of the
models in terms of CPU and GPU are summarized in Table 3.

As one would expect, the CPU run times of all models increase
with the complexity of the datasets. OnCPU-based hardware,MLFM
achieves either lower or comparable run time to other baselines. As
the feature and label spaces become larger, the tree-based XMLC
methods are either comparable to (e.g., RCV1) or prevail over (e.g.,
EURLex) the other models. Their implementations support multi-
threading, which gives them an advantage over the other models.
It must also be noted that the three XMLC baselines (FastXML,
PfastreXML and Parabel) were implemented in C++, whereas the
other baselines were implemented in Python. Despite the imple-
mentation differences, MLFM and OVA-LR have lower latencies
than PfastreXML and Parabel on MediaMill and RCV1. Also, in
spite of the slower run time, particularly on EURLex, it should be
noted that MLFM achieves better classification performance than
the tree-based methods.

The implementations of only three models (OVA-LR, OVA-MLP
and MLFM) supportGPU execution. When run on a GPU, the laten-
cies of the three models are comparable. However, their run times

are orders of magnitude better than those of the multi-threaded
XMLC baselines.

In summary, based on the observations from Sections 4.3.2 and
4.3.3, the MLFM model seems to provide a satisfactory trade-off
between classification performance and computational efficiency.

4.4 Experiments on Behavioral Targeting
In behavioral/audience targeting, users are assigned to a set of seg-
ments based on their behavior on the web. A segment definition
specifies the criteria identifying the users for that particular seg-
ment. The criteria, which is aligned with an ad campaign objective,
can either be provided by an advertiser or automatically inferred
from users’ online behavior. In the former case, the advertiser can
provide keywords that correspond to user behavior, or define page
visits or purchases to identify users who are likely to visit a partic-
ular page or purchase a certain product. In the latter case, the users
are assigned to an interest category as defined by a taxonomy [18].

In this work, we demonstrate the performance of our model on
both types of audience targeting3. In Section 4.4.1, we describe the
application of our model to conversion-based targeting. A conver-
sion event, or an acquisition, is any interaction or activity performed
by a user that is defined by an advertiser as the objective of a cam-
paign, or as being valuable to the business. Next, in Section 4.4.2,
we describe our model’s application to interest-based targeting,
where a user is assigned to hierarchically structured interest cate-
gories. While conversion-based targeting is the primary focus of
our work, we also applied our work to interest-based targeting,
even though our model was not initially designed for handling
hierarchical labels.

Real-time and near-real-time targeting are of considerable im-
portance as they allow estimation of a user’s behavior based on
their most recent set of activities, given that the user’s interest or
affinity can change over time. Further, when a user’s history is
limited, predicting the user’s conversion behavior or their interests
can provide a more enriched user profile for the real-time bidding
process, which identifies the best advertisement for the user.

4.4.1 Conversion-Based Targeting. For model training purposes,
ad requests were sampled over a period of one week. The ad re-
quests were collected such that for each request an impression was
registered upon displaying an ad. A similar dataset for the subse-
quent three days was collected and used as a holdout (test) set. This
resulted in training and test datasets containing ∼950 million and
∼160 million records, respectively.

For each record, the following fields were extracted: webpage
top-level domain, webpage subdomain, webpage URL, user location,
i.e. city and country, user’s local time, device type, browser type,
make and model of mobile device, mobile app name, and webpage
category. These fields were one-hot encoded, resulting in millions
of binary features. Thus, the features’ values were ordered by their
frequencies and the top 200,000 were selected. An additional ‘other’
category was created to cover the less frequent features. The lists
of conversion-based segments that a user qualified for were used
to label the records.

3This research was conducted in accordance with Yahoo’s Privacy Policy and respect
for applicable user privacy controls.
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Table 3: Classification performance and average inference run times (in milliseconds) measured on the publicly available
datasets. Bold and italic formatting indicate best and runner-up performance, respectively.

Model
MediaMill RCV1 EURLex

AUC Inference time AUC Inference time AUC Inference time
Macro Stratified CPU GPU Macro Stratified CPU GPU Macro Stratified CPU GPU

OVA-LR 0.6582 0.6689 0.0110 0.0053 0.6197 0.9466 0.2612 0.0104 0.7900 0.9168 6.6999 0.0133
OVA-SVM 0.5090 0.4944 0.0834 – 0.7697 0.7490 5.3943 – 0.7723 0.7474 67.2408 –
OVA-MLP 0.6141 0.7130 0.0443 0.0085 0.9020 0.9618 0.3896 0.0176 0.8967 0.9703 6.7850 0.0237
FastXML 0.6789 0.7946 0.1071 – 0.6906 0.9485 0.2992 – 0.8359 0.9448 0.9486 –
PfastreXML 0.8354 0.8081 0.4330 – 0.9354 0.9873 1.8260 – 0.9282 0.9734 2.8259 –
Parabel 0.7963 0.8024 0.0536 – 0.8439 0.9623 0.7467 – 0.8687 0.9558 2.3686 –
MLFM 0.8456 0.8248 0.0200 0.0113 0.9179 0.9808 0.3955 0.0192 0.9613 0.9847 7.9049 0.0298
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Figure 1: Distribution of labels (conversions) in the
conversion-based targeting dataset.

Note that segments with a relatively small number of registered
conversions across all records were omitted from the training pro-
cess, resulting in 1098 segments deemed eligible for training. The
conversion frequencies for the selected segments are visualized in
Figure 1.

Offline Performance Evaluation. The models trained on the
weekly ad request data were used to predict the set of segments
that the users qualified for. The predictive performances of the
models were measured for each individual segment. Their overall
performances across all of the segments are summarized in Table 4.
Due to the large size of the dataset, the training of the OVA-MLP
model took an extensive amount of time, which makes it not well
suited for the time-critical targeting application at hand.

First, it can be observed that the XMLC tree-based methods out-
perform OVA-LinSVM by a considerable margin. They are quite
comparable to OVA-LR with respect to macro-average AUC. Nev-
ertheless, in terms of stratified AUC (weighed by the conversion
frequencies of the segments), the XMLC baselines (particularly
PfastreXML and Parabel) outperform both OVA methods. When
the conversion frequencies are not accounted for in the evaluation,
Parabel yields a macro AUC superior to the OVA models and the
other XMLC baselines. This is due to Parabel’s ability to sidestep the

Table 4: Offline predictive performance, summarized over
1098 conversion-based targeting segments.

Model Macro Test AUC Strat. Test AUC
OVA-LR 0.7928 0.7477
OVA-SVM 0.7707 0.7028
FastXML 0.8011 0.7528
PfastreXML 0.8065 0.7804
Parabel 0.8239 0.7892
MLFM 0.8421 0.8006

class imbalance problem by partitioning the segments into balanced
groups of records.

MLFM outperforms all OVA and XMLC baselines, yielding lifts
of 1.8%-7.1% in macro AUC and 1.1%-9.8% in stratified AUC. As the
XMLCmethods partition or sample the features, they fail to capture
the feature interactions informative to estimating the conversion
probabilities for different segments. The linear models ignore such
interactions altogether due to their limited modeling capacity. This
shows the importance of MLFM’s capability to leverage interactions
between features in a joint multi-segment conversion prediction
scheme.

When applied to (near) real-time targeting, a segment qualifica-
tion model would need to be computationally efficient to ensure
timely generation of predictions. Consequently, for the purposes of
the following experiments, we compare MLFM to the most light-
weight model, OVA-LR. Based on the results on the benchmark
datasets shown in Table 3, the other baselines would not typically
meet the response time criteria and were thus deemed inapplicable
to this use case.

The overall metrics analyzed in the previous experiment are
easy-to-follow and allow for convenient comparison of the mod-
els. However, superior macro AUC or stratified AUC of one model
over another does not necessarily indicate better performance on
the majority of segments, as the former metric is sensitive to very
large or very low per-segment AUC values, while the latter inher-
ently favors conversion-prevalent segments. In Figure 2, we show
a detailed comparison of the per-segment AUC values obtained by
MLFM against those obtained by OVA-LR.
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Figure 2: Head-to-head comparison of MLFM and OVA-LR.
The heights of the light blue bars represent the per-segment
AUCs obtained by MLFM, while the light red bars represent
those obtained by OVA-LR. The segments on the x-axis are
ordered by MLFM’s per-segment AUCs.

We can initially observe that improvements are introduced on
the majority of segments as it is visible that the blue bars in Figure
2 generally surpass the red ones. This is the case for 1069 out of
the 1098 conversion-based segments, which translates into slightly
more than 97% of all segments. Finally, larger performance gaps
are attained for segments on which OVA-LR typically manifests
lower AUCs, as such segments have fewer training examples. This
behavior can be attributed to the ability of MLFM to jointly estimate
parameters across all segments as opposed to OVA-LR that learns
an LR model for each segment separately.

Performance on Real Traffic. We compared the performance
of OVA-LR and MLFM on real traffic for a period of one week. Con-
versions are direct indicators of the performance of the models,
since they capture the users’ interest and affinity. Moreover, the ad
campaigns that use these segments are optimized for conversions.
With that in mind, we compared the number of conversions attrib-
uted to the OVA-LR and MLFM models. Overall, MLFM attained a
5.32% lift in the number of conversions. Out of the 1098 segments,
OVA-LR had more conversions only on nine segments by about
0.19%.

4.4.2 Interest-Based Targeting. To further inspect the effectiveness
of multi-label modeling for targeting segments, MLFM was addi-
tionally applied to a secondary real-world use case. As opposed
to the use case presented in Section 4.4.1, this use case concerns
the assignment of a user to multiple, hierarchical segments based
on the user’s interests. We refer to these targeting segments as
interest-based or simply interest segments.

Both the training and test datasets were labeled with their cor-
responding interest categories declared for the users. The interest
categories were derived from the users’ affinity to each category.
Similar to the conversion-based targeting application, each record
was described by 200,000 features representing one-hot encodings

Table 5: Offline predictive performance, summarized over
all 425 interest-based targeting segments.

Model Macro Test AUC Strat. Test AUC
OVA-LR 0.6865 0.6048
MLFM 0.8522 0.8519

Table 6: Inference time per record (in milliseconds).

Model Inference time (ms)
OVA-LR 0.067447
MLFM (original) 0.159827
MLFM (lightweight) 0.101286

of the fields and was labeled with interest categories corresponding
to 425 interest-based segments (the distribution of the segment
qualifications is provided in Section A.3). MLFM and OVA-LR were
trained on 180 million of the records, while 45 million records were
used to assess their predictive performances. The prediction AUCs
of both models were then measured for each individual interest
segment; their overall performances across all of the segments are
summarized in Table 5.

Table 5 indicates that MLFM outperforms OVA-LR by a sub-
stantial margin. More specifically, MLFM introduces an overall
improvement of 16.6% in macro-average AUC and 24.7% in strat-
ified AUC (weighed by the number of qualified records for each
of the segments). These findings suggest that the MLFM model
is capable of achieving reasonable performance on hierarchically
organized segments as well, even on rare classes as indicated by the
improved stratified AUC. This can be attributed to MLFM’s capabil-
ity to take advantage of feature interactions in the dataset, as there
is a large overlap between parent and child segments. We observed
that the model converged within 1 epoch, which also might be a
consequence of the hierarchical relationships and overlap among
the segments.

4.4.3 Runtime Considerations. This section encompasses aspects
that should be considered when running MLFM, such as inference
time, memory consumption and sensitivity to hyperparameters.

Inference Analysis. The efficiency of the models was evaluated
by computing the run times of their inference (i.e. prediction) pro-
cedures on the conversion-based targeting dataset. For the MLFM
model variants, we have set both 𝑀 and 𝐻 to 10. The measured
inference times were averaged over all records and reported in
terms of milliseconds (ms).

From Table 6, it can be observed that OVA-LR exhibits the lowest
latency, which is to be expected due to its low model complexity.
The MLFM model, using its original formulation (Eq. (7)) is slower
than OVA-LR. However, when the lightweight formation from Eq.
(12) is used for inference, MLFM’s latency drops considerably. The
reason is that the asymptotic complexity of MLFM becomes linear
in terms of the number of fields 𝐷̂ (see Section 3).

Memory Requirements. When it comes to memory consump-
tion, all parameters of MLFM are organized into four parameter
sets in memory. However, recall that MLFM can essentially be
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Table 7: Memory requirements for OVA-LR and MLFM.

Model Parameters Dimensions Example Size

OVA-LR Feature weights &
Bias terms (𝐷 + 1) × 𝐿 200K × 1098 ∼3.9 GB

Feature weights 𝐷 × 𝐿 200K × 1098 3.9 GB
Bias terms 1 × 𝐿 1 × 1098 20.4 KB
Feature embeddings 𝐷 ×𝑀 200K × 10 48.7 MB
Interaction weights 𝐷̂2 × 𝐿 324 × 1098 6.3 MB

MLFM

Grand total ∼4.00 GB

thought of as a joint extension of per-segment models with addi-
tional modeling of feature interactions. That being said, OVA-LR
already consumes the same memory as MLFM’s linear projection
weights and bias terms (totaling slightly over 3.9 GB), hence MLFM
requires only several tens of additional megabytes (or around 2.5%
of additional memory) to store the remaining feature embeddings
and field interaction weights.

Hyperparameter Sensitivity. The sensitivity of MLFM to the
selection of the feature embedding dimension, being MLFM’s cen-
tral hyperparameter, was also analyzed. For this purpose, MLFM
was trained using different embedding dimensions, starting from
10, through 20, 30, 50, up to 100. In each case, MLFM’s multi-label
classification performance as well as its memory consumption were
measured.

From Figures 3a and 3b, it can be initially observed that the pre-
dictive performance increases with the feature embedding dimen-
sion. This observation holds across the great majority of segments
as indicated by the change in macro-average AUC. On the other
hand, the slight increase in stratified AUC suggests that higher val-
ues of𝑀 impacted only the performance on rare classes (segments
with less prevalent training examples), positively in some cases
and adversely in others. However, despite the relative and rather
incremental increase, there does not seem to be a significant change
in the AUC metrics.

More precisely, using a larger embedding dimension will result
in only a slight performance improvement (∼1% or less) at the cost
of the inevitable increase in model complexity, and thus in latency.
This suggests that selecting a larger embedding dimension would
not be necessary, which is also the main reason behind the selection
of𝑀 = 10 in all of the previous experiments.

Further, Figure 3c shows that the required memory to store
MLFM’s parameters increases linearly with the embedding dimen-
sion since, apart from the feature embeddings of size 𝐷 ×𝑀 , the
other model parameters are not effected by changes in𝑀 (recall Ta-
ble 7). Nevertheless, as it was previously observed that a dimension
as low as 10 should be sufficient for attaining satisfactory classifi-
cation performance, there is no need to further expand the model
size.

5 CONCLUSION
In this paper, we presented an approach, Multi-Label Factoriza-
tion Machine (MLFM), that extends the Factorization Machine (FM)
model in order to handle extreme multi-label classification tasks
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Figure 3: Effect of different embedding dimensions on
MLFM’s classification performance on the conversion-based
targeting dataset in terms of (a) macro-average and (b) strat-
ified AUC; as well as the corresponding impact on (c) the
memory required for storing MLFM’s parameters.

with relative ease. The proposed MLFM model is capable of han-
dling a large number of labels without compromising prediction
accuracy. We used behavioral ad targeting as a case study, and pre-
sented the results of applying our model to assign users to targeting
segments. We also demonstrated the performance of our model on
benchmark datasets in comparison with several baseline models.
As a part of our future work, among other open problems in XMLC,
we aim to extend MLFM to use cases involving label hierarchies
(as briefly discussed in Section 4.4.2) and further mitigate the ubiq-
uitous challenge of modeling label distribution tails for rare-class
prediction.
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A SUPPLEMENTAL MATERIAL
A.1 Implementation Details
For the benefit of facilitating reproducibility, we provide a pseu-
docode for MLFM’s training and inference procedures in Algorithm
1 and Algorithm 2, respectively.

Algorithm 1MLFM’s Training Framework
Input:

Training set {(x𝑛, y𝑛)}𝑁𝑛=1 (transformed to LibSVM format)
Set of fields {𝐹1, 𝐹2, . . . , 𝐹𝐷̂ }
Number of training epochs 𝑇
Batch size 𝐵
Embedding dimension𝑀

Training procedure:
1: Randomly initialize the model parameters Θ = (w0, W, R, V)
2: Build a feature vocabulary 𝑆𝑓 𝑒𝑎𝑡 = {𝑓1, 𝑓2, . . . , 𝑓𝐷 }
3: Create a feature weight lookup 𝜔 : 𝑆𝑓 𝑒𝑎𝑡 → R𝐿

4: Create a feature embedding lookup 𝑔 : 𝑆𝑓 𝑒𝑎𝑡 → R𝑀
5: for 𝑡 = 1, . . . ,𝑇 ∗ 𝐵 do
6: (X,Y) ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑏𝑎𝑡𝑐ℎ

(
{(x𝑛, y𝑛)}𝑁𝑛=1

)
7: Φ← 𝑀𝐿𝐹𝑀_𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (X,Θ, 𝜔, 𝑔) // Based either on

// Alg. 2 or its lightweight counterpart (Eq. (12))
8: P← 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (Φ) // Refer to Eq. (6)
9: 𝑙𝑜𝑠𝑠 ← ℓ (P,Y) // Refer to Eq. (8)
10: Update model parameters Θ based on the current 𝑙𝑜𝑠𝑠
Output: Return the optimized Θ∗

Algorithm 2 Inference with MLFM
Input:

Batch X of 𝐵 data points
Model parameters: Θ = (w0, W, R, V)
Map 𝜔 that retrieves a feature’s weights w.r.t. all labels from W
Map 𝑔 that retrieves a given feature’s embedding from V

Procedure:
// Calculate the linear projection term

1: Ŵ← [𝜔 (𝑥𝑛𝑗 )︸  ︷︷  ︸
1×𝐿

]𝐵,𝐷̂
𝑛=1, 𝑗=1 // size: 𝐵 × 𝐷̂ × 𝐿

2: Ŵ← [∑𝐷̂
𝑗=1 𝑤̂𝑛𝑗𝑙 ]𝐵,𝐿𝑛=1,𝑙=1 // size: 𝐵 × 𝐿

3: Φ𝑙𝑖𝑛 ← Ŵ + [w0, . . . ,w0]︸          ︷︷          ︸
repeat 𝐵 times

⊤ // size: 𝐵 × 𝐿

// Calculate the feature interaction term
4: V̂𝑛 ← [𝑔(𝑥𝑛𝑗 )︸ ︷︷ ︸

1×𝑀

]𝐷̂
𝑗=1 ,∀𝑛 = 1, . . . , 𝐵 // 𝐵matrices of size: 𝐷̂×𝑀

5: Ŵ𝑖𝑛𝑡𝑒𝑟 ← [V̂𝑛V̂⊤𝑛 ]𝐵𝑛=1 // size: 𝐵 × 𝐷̂ × 𝐷̂
6: Φ𝑖𝑛𝑡𝑒𝑟 ← [∑𝐷̂

𝑗=1
∑𝐷̂
𝑘=𝑗+1 𝑤̂

𝑖𝑛𝑡𝑒𝑟
𝑛𝑗𝑘

𝑟 𝑙
𝑗𝑘
]𝐵,𝐿
𝑛=1,𝑙=1 // size: 𝐵 × 𝐿

Output: Return Φ𝑙𝑖𝑛 + Φ𝑖𝑛𝑡𝑒𝑟

Lightweight Inference. The inference procedure described in
Algorithm 2 is based on the standard MLFM formulation (Eq. (7)). In
terms of model parameters, the only difference for the lightweight
formulation would be the use of the field embedding matrix U
of size 𝐷̂ × 𝐻 × 𝐿 in place of the field interaction weight matrix
R = [𝑟 𝑙

𝐹 (𝑖 )𝐹 ( 𝑗 ) ]𝐷̂×𝐷̂×𝐿 . Since the linear projection term in the
lightweight formulation (Eq. (12)) remains the same as the one in
the standard formulation (Eq. (7)), Lines 1-3 in Algorithm 2 would
remain unchanged.

Only the interaction term (Lines 4-6) would need to be replaced
by calculating Eq. (11) for each data point x𝑛 in the batch X. In
this regard, two additional optimizations can be applied from an
implementation perspective, as described in the following.

First, recall that the Q𝑙
𝑖
= [𝑢𝑙

𝐹 (𝑖 )ℎ𝑣𝑖𝑚]
𝐻,𝑀

ℎ=1,𝑚=1 matrices are calcu-
lated using the field and feature embeddings inU andV, respectively.
Since, upon training, the optimal U∗ and V∗ will not change, the
Q𝑙
𝑖
matrices for the most frequent features can be precomputed

and organized in a lookup table into memory. That being provided,
during inference, the values 𝑞𝑙

𝑖𝑘
can be retrieved in constant time

from the corresponding Q𝑙
𝑖
for the highly prevalent features and

included in the sum from Eq. (11).
Second, irrespective of whether the inference is applied to a sin-

gle data point or a batch of data, the linear term and the interaction
term can be computed independently. Consequently, these tasks
can be parallelized.

Note that the same training framework (Algorithm 1) can be
used with the proposed lightweight formulation of MLFM.

A.2 Other Related Approaches
In this section, we would like to address two specific aspects of
the related work: (1) recent advances in FM modeling, and (2) ex-
treme classification approaches such as Extreme Multi-label Text
Classification (XMTC).

https://www.advertising.yahooinc.com/our-dsp/target
https://www.advertising.yahooinc.com/our-dsp/target
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A.2.1 Recent FM Approaches. Various deep FM models [12, 14, 26]
have been introduced to jointly learn explicit and implicit (higher-
order) feature interactions. Other approaches make effective use of
popular deep learning paradigms for the same purpose. For example,
AutoInt [47] utilizes attention mechanisms and residual networks
into a multi-head self-attentive architecture to automatically learn
high-order feature interactions. Further, the FM2 approach [48]
was designed to model field interactions and the authors devised a
unified framework of the factorization machine model family, in
which other FM variants can be derived as special cases. Almost
all of the aforementioned approaches were originally proposed
for tasks such as click-through rate (CTR) prediction in the realm
of recommender systems and online advertising. However, they
cannot be applied to XMLC problems, at least not directly.

In contrast, Neural FMs (NFMs) [10] have been explored for con-
ventional multi-label classification in relatively small label spaces.
The framework incorporates several hidden layers, applied on top
of two separate FMs, to encode both the features and labels, as well
as another set of hidden layers to reconstruct the labels from their
embeddings. Lastly, the two Neural FMs in the encoding stage are
based on the original FM formulation that does not account for
different data fields.

As a result of being rather sophisticated, the afore discussed
deep FM variants were not considered in our work as they require
additional parameterization that will in turn impact memory, stor-
age, and latency, which are the primary challenges in our use case
(described in Section 1).

A.2.2 XMTC Approaches. Although beyond the scope of our work,
it is worth mentioning that there is another active area of research
that concerns XMC problems based on textual input [7, 8, 35, 57–59],
also referred to as Extreme Multi-label Text Classification (XMTC)
problems.

As the name suggests, XMTC approaches are designed for appli-
cations where the input is unstructured text, and often employ
state-of-the-art architectures such as bi-directional LSTMs and
Transformers. Consequently, these approaches utilize the power
of GPUs for both model training and inference in order to achieve
reasonable speed up. However, the cost of such infrastructure is
not warranted in all applications, and some applications rely on
lightweight models to meet the latency requirements in production.
Moreover, it is not trivial to adapt such approaches for tabular data.

Further, some of these approaches were built to utilize an ex-
plicit label hierarchy or correlations in the output space. This is not
always the case in most recommendation and ad targeting appli-
cations, where such hierarchies may have to be inferred from the
data, or may be entirely absent.

As a result, such approaches are not directly applicable to the use
cases we focus on in this paper. However, we provide a performance
comparison with PECOS [58] as a representative of the family
of recent XMTC approaches. More precisely, we considered the
XR-Linear instantiation of PECOS as a baseline since it can take
tabular numerical data as input; the other instantiations require the

presence of textual input. The comparison was conducted on the
same public benchmark datasets discussed in Section 4.3.

Note that we have used a tabular (bag-of-words) feature repre-
sentation for the datasets, i.e. the same representation with which
they were originally provided in [4]. The results are summarized in
Table 8. Also, as a reminder, we considered standard classification
metrics such as AUC instead of metrics such as nDCG@k and Pre-
cision@k since we approach the problems described in this paper
from a standard multi-label classification perspective rather than a
ranking perspective.

Table 8: Classification performance in terms of AUC obtained
by the XR-Linear instantiation of PECOS and MLFM on the
publicly available datasets.

Model MediaMill RCV1 EURLex
Macro Stratified Macro Stratified Macro Stratified

XR-Linear 0.6584 0.7867 0.8138 0.9375 0.6450 0.9031
MLFM 0.8456 0.8248 0.9179 0.9808 0.9613 0.9847

Table 8 suggests that MLFM obtains lifts in classification per-
formance relative to that of XR-Linear. Nevertheless, it should be
noted that XR-Linear is primarily designed and intended for rank-
ing, not necessarily for conventional XMLC problems, hence its
lower performance in terms of standard classification metrics (such
as macro-average and stratified AUC) which are considered the
main performance indicators for our problem setting.

A.3 Additional Details on the Interest-Based
Targeting Dataset

In Figure 4, we provide the label distribution for the interest-based
targeting dataset.
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Figure 4: Distribution of labels (segment qualifications) in
the interest-based targeting dataset.
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