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Abstract
Advertising platforms have a growing need for improving prediction quality, as missing out on ad opportunities
can have a negative effect on their performance. To that end, prediction tasks such as conversion prediction
need to be continuously advanced through the inclusion of data from new sources or through algorithmic de-
velopment that tackles existing challenges. The introduction of different data sources naturally brings unwanted
noise, whereas underexplored areas still exist in modeling approaches, such as temporal information of events in
sequences. In this study, we propose extensions for modeling online user activity trails that address two very
important aspects of activities—time and noise, through dedicated layers that can be used in existing deep
sequence-learning approaches. Our proposed method exhibited area under the receiver operating characteristic
curve improvement of up to 3% and 1.75% compared with production and best baseline approaches, respec-
tively, across two major advertiser data sets and several predictive tasks.

Keywords: computational advertising; deep learning; discretized representations; time-aware modeling; user ac-
tivity trails

Introduction
The challenge of online display advertising (DA) lies in
displaying the most relevant advertisements (ads) to the
right users anywhere online in a timely manner. In this
industry, continuous improvement of user modeling for
maintaining competitive key performance metrics has
always been the key factor of success for advertising
platforms. Ads platforms strive toward learning as
much as possible about users’ interests from their online
behavior to recognize the right opportunities to display
attractive ads to users. This is a key component in mak-
ing the entire DA ecosystem efficient1 and allowing it to
grow to hundreds of billions of dollars worldwide.*

Modeling interests of a user heavily depends on the
data available about them, and ads platforms will resort
to collecting activities on a user from a wide spectrum

of sources such as advertisers’ websites traffic, won
online auctions, third-party data, and from owned-
and-operated (O&O) properties. The activities can
span very different types of data such as search history,
news articles read, e-mail and mobile stores purchase
receipts, various mobile events, and geo locations. Fur-
thermore, interests and preferences of users are learnt
by aligning the compiled users’ online footprint with
advertisers’ products, finally identifying users that
could become their business in the near future.

An example of one such online footprint is provided
in Figure 1 where we observe multiple interactions a
user had with different properties online, such as mo-
bile and desktop search, reading news, and interacting
with advertisers’ websites before a conversion action, or
purchase in the example. Actions are the most general
term for activities of interest highlighted by advertisers
and include conversions (such as online order or con-
version), but also other events such as user visiting the
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advertiser’s website for the first time (retargeting
event), or inquiries or interactions with advertisers’
websites such as clicks or reads of advertisers’ content.
The methodology proposed in this article is suitable for
any actions users may take that advertisers highlight as
important.

Learning user’s interests from data collected across a
variety of sources is a nontrivial task. First of all, the
number of unique activities collected may range from
hundreds of thousands to billions, thus making feature
selection and engineering very tedious tasks. Second,
coming from different data sources and with the mag-
nitude and diversity of potential actions, not all the sig-
nals will have the same predictive strength across many
different prediction tasks. This is what we refer to as the
heterogeneous property of activity and it is an impor-
tant aspect of our study. Third, due to a variety of dif-
ferent predictive tasks (per advertiser, per ad campaign,
etc.) it is difficult to highlight noninformative signals.

Furthermore, these trails of user’s activities provide
insight into the sequence of actions carrying more in-
formation than sequence-oblivious features. Moreover,
these trails are not just uniform sequences of tokens,
user actions always come with assigned timestamps,
which also carry a significant amount of additional in-
formation in terms of how close the subsequent activ-
ities were or how much time passed between activity
and event of interest (i.e., conversion).

Despite these challenges, large sets of well-designed
features are traditionally created through manual cura-
tion and feature engineering in the industry, thus par-
tially overcoming the challenges. Using these features
machine learning models have been successfully ap-
plied for different predictive tasks (i.e., click or conver-
sion predictions). Despite the existing success,
designing and selecting appropriate features for differ-
ent tasks remain a very challenging problem.2

Significant advances with the aforementioned chal-
lenges have been attained more recently, with the ef-

forts in developing deep representations of activities
to help automatically learn their features.3,4 Even
though these methods model sequences of activities
and apply different strategies to tackle or filter noisy
data such as various attention mechanisms, there are
several challenges remaining largely untackled in the
practice. We highlight two emerging ones in this study.

The first one is the temporal information that comes
with sequences where activities do not occur uniformly
in time. The second is inattentiveness to the inherent
noise in the data collected from different sources,
which traditional machine learning solutions normally
assign uniform focus to all tokens in a sequence that are
not filtered out by any preprocessing of feature selec-
tion techniques. Even when existing approaches do
try to model noise through different attention mecha-
nisms,5 they usually are not able to completely remove
the influence of noisy activities, but merely lower their
effect in the overall prediction. In the context of this
study, we call such attentions soft attentions.

To address these two issues, we (1) describe existing
work in including temporal information and exploit a re-
cent solution to capture the temporal aspect of sequences,
and (2) propose hard attention mechanism to address the
ever-present issue of having random noise in available
signals to further boost algorithmic performance.

Key contributions of this study are summarized as
follows:

� We model conversion prediction task based on
time-ordered sequences of users’ activities col-
lected from multiple data sources.
� We exploit a time-aware mechanism to capture

the temporal aspect of activities. The approach ac-
cumulates up to 2.4% against production and 1%
against the best baseline area under the receiver
operating characteristic curve (AUC) lifts.
� We propose a hard attention mechanism to help

with untreated noise contained in heterogeneous

FIG. 1. User activity trail sequence with different types of activities ordered by the time they occurred and
ending with the action of an advertiser’s interest.
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data. The proposed approach accumulates up to
1.8% and 0.5% AUC lifts, whereas the combined
approach with time accumulates up to 3% and
1.75% AUC lifts against production and the best
baseline, respectively.

The rest of the article is organized as follows. In
Background and Related Work section we describe pre-
vious approaches to model conversions in DA as well
as recent advances from which we motivate our mod-
eling choices. The proposed methodology is discussed
in Methodology section. Data sets used to evaluate
the proposed method, baselines, and evaluation metrics
are described in Data Description section. Experimen-
tal results are discussed in Experimental Evaluation
section and finally, study is concluded in Conclusions
section.

Background and Related Work
Importance of predicting future actions of users, such
as conversions, is first given in the context of online
ads platforms ecosystem. In addition, relevant prior
studies on conversion and click prediction tasks are
discussed stressing important aspects that motivated
this study. Finally, approaches tackling two important
and underexplored aspects of online user modeling dis-
cussed in the introduction, sequence temporal, and sig-
nal noise modeling are discussed in detail as they are
major building blocks of the proposed approach.

Importance of action prediction to online
advertising systems
Running online campaigns on behalf of advertisers is
the main task of major ads platforms for DA. These
campaigns are designed to target certain activities
such as clicks or conversions (i.e., online purchase,
booking, or service subscription). Ads platforms partic-
ipate in online auctions where they bid for opportuni-
ties to show ads to users who are a potential business
on behalf of advertisers, thus achieving satisfactory
key performance indicators.

Once decided which ad should be shown to a user
for a given ad opportunity, platforms need to specify
their bid and participate in the online auction. In a sim-
plified manner, a bid is in most cases decided using the
following or similar formulation6:

bidi = f (a � pCVRi � impression valuei), (1)

where a is a product of several control parameters such
as pacing, Cost-Per-Mille, Cost-per-Click, Cost-Per-

Action, and other controllers and multipliers, pCVRi

is predicted conversion rate (example of action) for
the given opportunity i and impression valuei is the
dollar value of each impression set manually by the ad-
vertiser at line creation time. Function f represents the
dominant bidding strategy.

Putting it all together, deciding the value of the bid to
submit in online ad auction has three key aspects. Thus,
estimating action, that is, conversion, probability plays
an integral role that drives performance and allows an
ad system to display ads to relevant users.

Modeling users’ conversion prediction
Linear models, such as logistic regression,7 or nonlinear
models, such as random forests (RF), have been success-
fully utilized for tackling conversion probability estima-
tion in large advertising platforms. These approaches
run on powerful syntactic or semantic handcrafted
features.8

However, the downside is that these approaches in-
herently rely on manual design and selection of fea-
tures, which requires a substantial investment of
human time and effort. The usefulness of such hand-
crafted features is largely dependent on the domain
knowledge of human experts curating the features.
With the rise of DA, there has been an expansion of
these domains ranging across retail, automotive, travel,
communication, and so on, thus expanding the neces-
sary knowledge of handcrafting features to ensure high
performance. Moreover, predictive tasks are nonlinear
in the feature space, but considering feature interac-
tions (e.g., cross-features) quickly becomes prohibi-
tively expensive due to a combinatorial explosion.9

To address the aforementioned shortcomings, several
research directions with representation learning capabil-
ities have been proposed, notably factorization ma-
chines10 for conversion prediction or deep residual
networks11 and Siamese networks12 for click prediction
that tackle problem of learning nonlinear interactions of
raw features. Deep neural networks were also proposed
to learn representations from traditional features.11,13,14

Finally, as discussed, the online data about users are
naturally collected as sequences of activities thus, mod-
els that capture information from the sequence, most
notably recurrent neural network (RNN)-based deep
architectures, have been proposed.3,14–16 A common
theme for such approaches is that they perform signif-
icantly better than their nonsequential counterparts
unraveling the fact that the sequence of information
contains additional information that was previously
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largely underexploited. Moreover, Arava et al.16 and
Zhou et al.4 have used sequences of activities from mul-
tiple data sources, whereas Arava et al.16 have addition-
ally tackled the problem of conversion attribution task
for which they utilized temporal information of activities.

Exploring temporal information
in activity sequences
Modeling timestamp information in sequences has
been largely unexplored in the literature for a long
time; however, more recently several formulations
have been proposed. The authors of Pei and Tax17

and Beutel et al.18 propose several ways of generating
time features to be added to existing feature set. Exam-
ples of time features generated from activity timestamp
t (with additional hyperparameter c) include linear fea-
tures: vt = t

T, delta features18: vt = t�T , tanh features:
vt = tanh (cþ t

T )þ 1� tanh (c) and exp features:
vt = exp (c t�T

T ). However, these are the cases of strict
time decay effect where only activities that happened
close to prediction time may have higher values.

Categorizing time information has also been pro-
posed, such as categories of time differences between
activities (i.e., short or long)19 or hour of activity.20

Extending long short-term memory cells by adding
additional gate that takes into account the time passed
between subsequent events also showed promising re-
sults,21 however, without taking into account event-
specific temporal patterns. Another way of using time
information was proposed in Arava et al.16 with atten-
tion regularization mechanism that penalizes embed-
dings from being similar for two activities that occur
at a larger temporal distance. Finally, Rajkomar
et al.22 propose generating time features, similarly to
Pei and Tax,17 whereas the features are not appended
to the existing feature set, but used for generating atten-
tions of different activities through softmax layer.

These approaches, however, ignore activity-specific
time aspects of temporal transition of an activity,
whereas the majority exclusively model the time decay
factor penalizing activities that happen earlier in the
user trail that could have a long-term effect. With these
limitations of existing approaches, modeling temporal
information in activity trails would be incomplete.

Activity-specific temporal modeling based on state
transition modeling of dynamic systems was proposed
for a special case of conversion prediction task.23 In this
study, we describe and use the time-aware attention
model to capture the complex information from time-
stamps of activities in users’ trails.

Exploring stochastic hard attentions for modeling
noisy data
In general, machine learning framework information of
the input is treated uniformly without discrimination
of different parts. This process is different from
human reasoning that tends to selectively concentrate
on a part of information and at the same time filter
out a portion of perceivable information. To address
this uniform focus across different inputs, many vari-
ants of attention mechanism were proposed24–27 for
both sequence and image modeling with improvements
over their nonattention baselines.

However, all of the existing approaches, limited by
the need of learning differentiable continuous repre-
sentations, learn attentions in such a way that all fields
of feature maps will be given nonzero values, thus they
have no benefit of completely removing signals in the
feature map that may be noise. Addressing this chal-
lenge a differentiation between existing attention
mechanism (named soft attentions in the remainder
of the text) and attentions based on discrete represen-
tations capable of modeling zero weights (named hard
attentions) has been recently proposed.27 This initial
study successfully compared hard versus soft attention
mechanism on the image captioning task. Moreover,
discrete representations have shown benefits in model-
ing sequence data that are inherently discrete.28,29

Discrete representation, however, requires stochas-
tic neurons that traditionally could not be trained
through conventional backpropagation algorithm.
Thus, policy gradient30 algorithm, an unbiased gradi-
ent estimator, was employed for the task. However,
this algorithm suffers from being very complicated to
implement and often yields high gradient variance
during training.31

More recently, techniques such as reparametrization
trick32 allowed for the development of novel discrete
units that could be optimized through backpropagation
technique removing much of the shortcomings existing
approaches had, bringing to development of Gumbel-
softmax33,34 and semantic hashing35 techniques. Build-
ing on the novel advances, hard attention was extended
yielding better performance and more stable optimiza-
tion on several computer vision tasks36,37 and unsuper-
vised sequence representation learning.38

Hard attention mechanism was successfully employed
using Gumbel-softmax technique on several computer
vision tasks36,37 by forcing attention weights of the fea-
ture maps to be zero selecting only a few or only a single
value from the entire feature map.37 This approach
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allowed to address the inherent noise in the data and
force algorithm to summarize feature map informa-
tion effectively into a scalar. Modeling hidden layers
of neural networks to be discrete38 in addition to
hard attention modeling has shown benefits in allow-
ing improved reasoning from the discrete hidden rep-
resentations.28 In this case, semantic hashing
technique was shown to be superior.

Furthermore, Gumbel-softmax approach was suc-
cessfully applied to model compression and sparsification
tasks as a differentiable L0 regularization framework
to improve model training and inference speed and
generalization.39

As both Gumbel-softmax and semantic hashing
techniques were shown to be successful on different
tasks, we describe both techniques in detail and empir-
ically evaluate their performance on the sequences of
activities from a large universe of diverse activities for
the activity or conversion prediction task.

Discretization through Gumbel-softmax. Gumbel-
softmax is a categorical reparametrization technique
for a smooth approximation to Bernoulli random var-
iables that allows efficient estimation of discrete units
during training of neural networks, which was shown
to be efficient and has high performance.33,34

Gumbel-softmax works as follows. Given a vector hi,
samples gi are drawn first from the Gumbel distribu-
tion: gi = � log (� log (u)), where u~U(0, 1) are uni-
form samples. Then, Gumbel-softmax samples are
drown from the softmax as

yi =
exp ( log (Wg hiþ bg þ gi)=s)

Pk
j = 1 exp ( log (Wg hjþ bg þ gj)=s)

, (2)

Wg and bg are learnable parameters, k indicates di-
mension of generated softmax vector, whereas hyper-
parameter s is a temperature parameter whose value
dictates the sparseness of the resulting Gumbel-softmax
distribution vector. With low temperature s resulting
vector is close to 1-hot vector (i.e., with s = 0 original Ber-
noulli would be recovered, but differentiability would be
lost), and with large values of s resulting vector resembles
uniform distribution.33 As s is sensitive parameter that
can be crucial performance-wise, adaptive temperature
strategy31 is applied to learn it with the remainder of net-
work’s parameters. Specifically, the following mechanism
is set to determine the temperature value:

s =
1

softplus(Wtemphiþ btemp)þ 1
, (3)

with Wtemp and btemp being dedicated parameters for
temperature helping in disentanglement of the net-
work, whereas adding 1 can enable the temperature
to fall in the score of 0 and 1.

Discretization through semantic hashing. Discretiza-
tion of vectors is also possible using semantic hashing
technique.35 Similarly to Gumbel-softmax, semantic
hashing allows avoid annealing of the noise and provides
a stable discretization mechanism that does not require
additional loss factors. In this technique, to discretize
vector hi, during training exclusively, Gaussian noise is
first added hn = hiþ ni, where ni~N (0, 1), whereas the
sum operation is element-wise. From hn two vectors
are computed: h(1)

n = r̂(hn) and h(2)
n = (hn < 0) 2 [0, 1],

where r̂ is the hard-sigmoid function38:

r̂ = max(0, min(1, r(x)(c� b)þ b)), (4)

with r(x) ‘‘stretched’’ to the (b, c) interval, with b < 0
and c > 1 (i.e., b = � 0:1 and c = 1:1).

Discretized value of vector h is annotated as
b-dimensional vector hb. hb will have b bits interpreted
as integers between 0 and 2b. Thus, the value b could be
chosen carefully with respect to the dimensionality of
the data used, that is, if there are *1000 unique fea-
tures, b should be chosen to be 10 as 210 � 1 = 1023.

Methodology
Building on the related work with the goal of address-
ing existing challenges, we propose a novel deep archi-
tecture for conversion rate estimation that adopts three
attention mechanisms: SofT, hARd, and Temporal, a
framework that we refer to as the START model.

The START model (shown in Fig. 2) takes two sets of
inputs: sequence of activities feiji = 1 . . . Ng and time
differences of activities’ timestamps and the time
point of prediction. Activities from different data sour-
ces are embedded into joint space, whereas temporal
distances are used for learning temporal attention.
After combining the two, the new representation is
passed to a recurrent block to capture the sequence
of activities information. Soft attention and hard atten-
tion, learned through a discrete net, are used in parallel
and their combination produces a vector representation
of the input used to predict by a final classification block.

PREDICTING ACTIONS OF USERS USING ONLINE SIGNALS 5
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Blocks of the proposed model
We now describe blocks of the START model in detail
and provide hyperparameter information. All hyper-
parameters are chosen at a balance between computa-
tional and predictive performance, given available
infrastructure and previously reported values.12,23

Activity embedding block. Activities feiji = 1 . . . Ng
in the user’s trail are embedded into common space
vectors hei 2 Rdw = 200.

Temporal attention learning block. Motivated by the
Euler’s forward method40 for modeling change of
state in dynamic linear systems, we treat each activity
as a system whose state changes through time, as
done for temporal attention modeling in Gligorijevic
et al.23

To model temporal information of the activity, for-
ward method formulation is reused and its state value
is squashed to a probability using sigmoid function to
obtain activity-level contribution to the final task.
Two single-dimensional parameters are associated to
each activity ei: lei

2 Rdt = 1 and hei 2 Rdt = 1. These pa-
rameters are designed to model the temporal increment
Dt as time difference between current state i and the
state of interest j (i.e., timestamp when prediction is
used in ads system), capturing the important factor
of timeliness of the prediction:

Dt = sej � sei : (5)

d(ei,Dt) = S(hei � lei
Dt), (6)

S(x) =
1

1þ e� x
, (7)

parameter hei measures initial (time-invariant) influ-
ence, whereas lei

measures the change of the influence

(time-variant) of the activity with the time difference.
Activities whose influence does not change as we ob-
serve the activity through different points in the users
trails will have small jlei

j, whereas the opposite
means that position and time of the activity is very im-
portant for measuring its effect on conversion proba-
bility. As Dt is always positive and provided that hei

does not change, larger positive values of lei
would

mean that temporal score is closer to 0, and larger neg-
ative values that is closer to 1. Similarly, large positive
values of jhei j refer to stronger time-invariant impact
of the activity.

In contrast to existing approaches to modeling tem-
poral information in sequences described in Exploring
Temporal Information in Activity Sequences section,
our approach learns activity-specific temporal fac-
tors.41 These factors are used for gating how much in-
formation passes from each activity embedding into
the first nonlinear layer using the sigmoid activation.
Furthermore, impact of each activity in the sequence
is modeled regardless of how far away from prediction
the activity occurred and we achieve that through the
temporal activity state change representation modeling
as described earlier.

The learned activity embeddings and contributions
of each activity are then summarized to obtain new ac-
tivity representation vei

8hei2fi = 1...lng8d(ei,Dt)2fi = 1...lngvei = hei · d(ei,Dt), (8)

resulting again in vei 2 Rdw = 200 dimensional space. For
activities modeled in this way, we can easily analyze
their initial and time-varying impact during prediction
phase.

FIG. 2. Graphical representation of the proposed START model. Proposed blocks are highlighted in dashes
and element-wise multiplication with feature maps from other blocks shows the ease of inclusion of such
blocks in existing performing models such as attention RNN model shown through solid blocks. RNN, recurrent
neural network.
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Recurrent net block. Activity embeddings vei are cur-
rently sequence oblivious, thus a bidirectional RNN
model42 (with GRU cells43) is employed to capture se-
quence information:

ge1 , ge2 , . . . , geN = biRNN(ve1 , ve2 , . . . , veN , hGRU ): (9)

Bidirectional RNN architecture can learn complex
relations between activities, including higher order
session-level information (activities naturally grouped
together).12 The resulting embeddings gei are projected
to Rdm = 100 dimensional space.

Hard attention block—Discrete representation block.
As we discussed in detail, ability of algorithm to handle
inherent noise in the data is important for its perfor-
mance. Existing soft attention approaches are only ca-
pable of assigning smaller weights to noisy signals, not
being able to remove their potentially harmful effect on
algorithms performance. To that end, we employ the
hard attention mechanism, proposed for image seg-
mentation,27,37 to a sequence modeling task. Contrast
between soft and hard attention mechanisms is graph-
ically presented in Figure 3a and b.

The process of building hard attention block incor-
porates discrete neurons that can model zero weights
on the existing representations of activities gei . As a
choice of discrete neurons we experimented with
Gumbel-softmax and semantic hashing, both described
in detail in Exploring Stochastic Hard Attentions for
Modeling Noisy Data section as both have shown mer-
its on different tasks.

Hard attention block learns scores aei that are used
to reweight embeddings from the RNN layer gei as

8gei2fi = 1...lng8aei2fi = 1...lngqei = gei � aei , (10)

resulting in qei 2 Rdm = 100 dimensional space for Gumbel-
softmax, and for semantic hashing qei 2 Rdm = 18, as
218 = 262,144 is the first power of 2 larger than the num-
ber of unique activities considered in our data sets
(see Discretization Through Semantic Hashing section).
Operation � is an element-wise product.

It should be noted that the difference between the
two approaches is that Gumbel-softmax would give a
single weight to entire vector gei (values are replicated
along the dw dimension), whereas semantic hashing
would learn a weight for each dimension of gei indepen-
dently. Semantic hashing thus, thanks to its sigmoid
function, has the ability to remove only particular di-
mensions of activity embeddings rather than removing
entire activity representation. This approach has finer
granularity of modeling noise contained within differ-
ent activities, especially for activities that show hetero-
geneous properties.

Changing Gumbel-softmax to Gumbel-sigmoid to
achieve the same provided no improvements in our ini-
tial experiments, and it was thus omitted from experi-
ments. The two approaches are compared in detail in
the experimental evaluation.

Optimizing with hard attention. Training with discrete
neurons (discretization) can be challenging as initial
gradient updates have to pass through the discretiza-
tion bottleneck. The following training procedure is
used to address this challenge: for the first 10,000 up-
dates the entire network is trained without this discre-
tization layer, after which the layer is turned on until
training is completed. In the first 10,000 steps we

FIG. 3. Comparison between soft and hard attention mechanisms shown through their affect on learned
feature maps. (a) Soft attention. (b) Hard attention.
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expect the loss will approach convergence, whereas
after switching on discretization layer the loss increases
slightly before improving for the remainder of training
phase.

Soft attention learning block. Vector summarization
of input representation producing matrix is a good
practical approach for classification tasks. Attention
mechanism was shown to be a good approach for high-
lighting important parts of the sequence3,12,44 and
using the scores for obtaining weighted input vector
representation.

Attention mechanism is trained to provide activity-
level scores that highlight activities of greater impor-
tance for the task at hand. We implement the attention
model through a two-layered neural network sq(ge; he)

with softmax outputs and the following dimension:
Rda1 = 100 and Rda2 = 1:

tei =
exp (se(gei ; he))Pln

i = 1 exp (se(gei ; he))
: (11)

The neural network se(gei ; he) learns real valued
scores (attentions) for each ith activity in a given
user trail. Obtained attentions tei are then used to
reweight discretized representation of each activity
in sequence qei and to obtain compact summarization
of the entire sequence s =

P
i tei � qei that can be easily

used in the following prediction block of the network
architecture.

Learning to predict from the resulting representa-
tion. Two fully connected layers with inner dimen-
sion of Rdc = 100 and ReLU nonlinearities with final
sigmoid layer r( � ) are applied on the summarized vec-
tor to obtain the probability of conversion.

For the tasks considered, the standard logistic loss L
was used for optimizing the network parameters:

L= � 1
N

XN

n = 1

(yn log (ŷn)þ (1� yn) log (1� ŷn)), (12)

where ŷn are obtained logits after final sigmoid layer
and yn is label for the nth user trail.

Experimental Evaluation
The data used for our experiments are first described in
detail, followed by description of baselines and evalua-
tion metrics, and finally, results on described data sets
are provided and discussed.

Data description
Experiments are conducted on user activity trails data
collected across Yahoo’s assets.{ These include chrono-
logically ordered activities derived from multiplex
sources such as Yahoo Search, commercial e-mail re-
ceipts, news, and other content reads on Yahoo and
AOL homepages, Yahoo Finance, Sports and News,
HuffPost, TechCrunch, and so on, advertising data
from Yahoo Gemini and Verizon Media DSP (e.g., ad
impressions, clicks, conversions, and site visits). Each
activity consists of activity ID, time stamp, its type
(e.g., search, invoice, reservation, content view, order
confirmation, and parcel delivery), and a canonicalized
and normalized raw description of the activity (e.g., the
search query term for search activities).

All user consensual, advertiser-specific, and local
legal guidelines have been considered when creating
the data sets.

Data sets used in this study are collected from two
anonymized major advertisers from retail and commu-
nications domains that we will denote as advertiser A
and advertiser B, respectively. Advertiser A has defined
three different conversion tasks for its three retail port-
folios, whereas advertiser B defined a single conversion
task. Training sets for the two advertisers comprised
(after eligible users and activities are selected and neg-
atives downsampling is performed to maintain roughly
10% of positives) 1,094,038 trails in train and 273,105
for test set for advertiser A, and of 959,540 trails in
train and 239,610 for test set for advertiser B, collected
over an undisclosed period >100 days.

For both data sets, it is possible that the same user
has multiple trails for multiple conversions; however,
this occurs in <1% of users. A common activities vo-
cabulary was selected for the two advertisers, and it
contains 243,713 the most prevalent activities. Filtering
of activities is done before downsampling negative
users so as to select activities that occurred in >1000
unique user trails. The maximum length of user activity
trails was selected to be 500 activities after deduplica-
tion as per data set statistics (*80% of all users had se-
quence length £500).

Baselines
Models representing previously published studies or
models that are expected to fit well with the given
setup are used as main baselines in this study:

{All data sets used in this study are published for academic use at https://webscope
.sandbox.yahoo.com/catalog.php?datatype=a&did=87 (last accessed April 2022).
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1. Random forests (RF): RF algorithm with 1000
trees ran on one-hot encoded features from activ-
ities in trails. Top 500 features are selected for
each task using the chi-squared feature selection.
This process mimics the exact setup used in the
current production system.

2. Recurrent neural network (RNN): A recurrent
neural architecture using efficient GRU cells on
top of embedding layer with two fully connected
layers for classification.

3. 1D convolutional neural networks (CNN): A one-
dimensional temporal convolution on top of
learned activity embeddings with two fully con-
nected layers for classification.

4. RNN with attention layer (RNN+Attn): An ex-
tension of the RNN model with additional atten-
tion layer used to summarize the sequence.44

5. RNN with self-attention layer (RNN+SelfAttn):
Alternative extension of the RNN model with
self-attention layer.25

To evaluate the two new blocks, temporal and hard
attention, we build on the best performing algorithm
from published baselines, which is RNN+Attn in our
experiments and shows improving results of RNN
with temporal attention (RNN+TimeAttn) and a com-
plete START framework with Gumbel and semantic
hashing discretization approaches. The detailed abla-
tion study results are provided in Supplementary
Appendix SA1.

Model configuration and training. As the proposed
START model is built on top of RNN+Attn baseline,
we kept all hyperparameters of RNN-based ap-
proaches the same as shown in Methodology section.
CNN architecture uses four 1D convolutional blocks
with 64 filters of width 3 and batch normalization be-
tween layers, the resulting output is flattened and for-
warded to the same classification block used by the
other algorithms. To optimize L, we use stochastic
gradient descent with Adam optimizer, and the best
learning rate found through grid search was 0.001,
whereas weights are initialized by the truncated nor-
mal initializer.

All deep learning models were trained on distributed
TensorflowOnSpark{ infrastructure with 20 GPU (Nvi-
dia K80) machines.

Evaluation metrics. Quality of estimated classification
probabilities is estimated using the AUC classification
performance measure with accuracy, precision, and re-
call scores obtained after choosing the classification
threshold.

Experimental results: Combining temporal
and hard attentions with existing approaches
In the first phase of experimental evaluation, we assess
the effect of modeling temporal signals and using dis-
cretization in the hidden layers to model noisy signals.
We discuss results on both binary and multiclass clas-
sification tasks for the two major advertisers.

Results—Binary classification. In the first step, we
rank the baselines by their performance, followed by
a discussion on how the proposed extensions fare
with the best performing one. The first task is the bi-
nary classification where we predict whether a user
will convert to any of the conversion tasks set by the
two advertisers (Table 1). We observe the difference
in predicting conversions for retail versus communica-
tions advertisers, where retail category conversion pre-
diction tasks tend to be easier. The heterogeneity of the
data is juxtaposed with the target models are optimiz-
ing for, and thus for different data sets, we may expect
different performances.

Table 1. Performance metrics on binary classification task
for advertisers A and B for all baseline models and temporal
and hard attention extensions

ROC AUC Accuracy Precision Recall

Advertiser A
RF 0.9470 0.8715 0.5715 0.8764
CNN 0.9522 0.9086 0.6719 0.8695
RNN 0.9557 0.9093 0.6717 0.8789
RNN+Attn 0.9597 0.9193 0.7031 0.8820
RNN+SelfAttn 0.9544 0.9006 0.6470 0.8719
RNN+TimeAttn 0.9703 0.9376 0.7620 0.9033
START(Gumbel) 0.9684 0.9155 0.6832 0.9076
START(SemanticHash) 0.9772 0.9366 0.7495 0.9236

Advertiser B
RF 0.9020 0.7968 0.1564 0.8598
CNN 0.7206 0.6968 0.0862 0.6386
RNN 0.8997 0.8654 0.2113 0.7926
RNN+Attn 0.9194 0.8745 0.2279 0.8169
RNN+SelfAttn 0.9160 0.8791 0.2326 0.8017
RNN+TimeAttn 0.9248 0.8960 0.2647 0.8135
START(Gumbel) 0.9267 0.8519 0.2040 0.8560
START(SemanticHash) 0.9276 0.8982 0.2696 0.8162

Italicized values are the best performing baselines and bolded values
are novel approaches outperforming them.

AUC, area under the ROC curve; CNN, convolutional neural networks;
RF, random forests; RNN, recurrent neural network; RNN+Attn, RNN with
attention layer; RNN+SelfAttn, RNN with self-attention layer; ROC,
receiver operating characteristic.{https://github.com/yahoo/TensorflowOnSpark (last accessed October 2021).
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RF, a nonsequence modeling approach, shows the
lowest performance overall; for advertiser A it is out-
performed by all sequence modeling approaches,
whereas for advertiser B it is comparable with the sim-
ple RNN approach but is outperformed by their
attention-based extensions.

As expected according to the available litera-
ture,4,12,15,16 attention-based models seem to stably
add value to their baselines, which is especially the
case with RNN+Attn approach, whereas RNN+
SelfAttn approach does fail to outperform its RNN base-
line for the two advertisers, side from accuracy and
precision for Advertiser B. Overall, RNN+SelfAttn pro-
vides the least improvements over its baseline, whereas
adding significant computational overhead as compared
with a more traditional RNN+Attn. The latter, without
exception, provides improvements across the majority
of metrics and is the best performing baseline.

We first experiment with adding temporal modeling
layer to the RNN+Attn model23 as described in Temporal
Attention Learning Block section. Results for both ad-
vertisers A and B show significant improvement over
the best performing baseline yielding the best perform-
ing results across the board in Table 1. This confirms
our assumptions that a piece of significant information
is contained in the temporal aspect of when activities oc-
curred and that sequence of activities only does not con-
tain the complete image of the structure of the data.

We finally discuss results obtained on binary classi-
fication task for the two advertisers when using a com-
bination of the performing temporal attention and the
hard attention through the two discretization ap-
proaches and three strategies (START model). With re-
spect to previously discussed results, the main goal of
this analysis is to see if the hard attention mechanism
implemented through discretization techniques would
provide additional value to the best performing RNN+
Attn and RNN+TimeAttn models.

The results using semantic-hashing discretization
technique together with time attention truly provided
the best performance on both data sets, outperforming
both RNN+Attn on all and RNN+TimeAttn models on
a majority of metrics. However, Gumbel-softmax dis-
crete approach has not shown stable performance on
the two data sets. Even though its performance was
consistently better than RNN+Attn model, it only im-
proved performance over RNN+TimeAttn on the sec-
ond data set. This performance demonstrated that the
discrete Gumbel inductive bias may not fit all data
well, something which was also observed previously.38

Furthermore, it appears that our assumption that
through capturing the complete context of the data
(in particular the time aspect of activities for our prob-
lems) allows the hard attention layer with semantic
hashing to truly highlight the remaining noise in the
data either through eliminating dimensions of activity
representations or eliminating activity entirely, and im-
proving models’ overall performance.

Results—Multiclass classification. We further assess
the performance of all approaches on multitask classi-
fication task (Table 2). This task is defined for adver-
tiser A who specified three different conversion tasks
denoted as tasks 2–4, whereas task 1 refers to predicting
whether a user will not convert for advertiser A, an op-
posite task of the binary classification setup.

Similarly, as in the binary classification setup, RF
is the worst performing baseline, outperformed by the

Table 2. Performance metrics on multiclass classification
task for advertiser A for all baseline models and temporal
and hard attention extensions

ROC AUC Accuracy Precision Recall

Advertiser A—Task 1
RF 0.9216 0.8294 0.9630 0.8276
CNN 0.9529 0.9020 0.9773 0.9037
RNN 0.9603 0.9086 0.9767 0.9124
RNN+Attn 0.9588 0.9109 0.9761 0.9158
RNN+TimeAttn 0.9735 0.9382 0.9811 0.9442
START(Gumbel) 0.9185 0.8419 0.9629 0.8432
START(SemanticHash) 0.9727 0.9362 0.9815 0.9413

Advertiser A—Task 2
RF 0.9143 0.8353 0.0918 0.8075
CNN 0.8605 0.7963 0.0774 0.8346
RNN 0.8811 0.7704 0.0689 0.8310
RNN+Attention 0.9221 0.8062 0.0847 0.8798
RNN+TimeAttn 0.9423 0.8303 0.0984 0.9098
START(Gumbel) 0.8740 0.7520 0.0648 0.8425
START(SemanticHash) 0.9448 0.8425 0.1054 0.9118

Advertiser A—Task 3
RF 0.9102 0.8193 0.2371 0.8100
CNN 0.9130 0.8428 0.2716 0.8516
RNN 0.9246 0.8424 0.2714 0.8539
RNN+Attn 0.9333 0.8512 0.2843 0.8580
RNN+TimeAttn 0.9494 0.8752 0.3278 0.8853
START(Gumbel) 0.8898 0.7729 0.2011 0.8457
START(SemanticHash) 0.9520 0.8750 0.3290 0.8976

Advertiser A—Task 4
RF 0.8951 0.8007 0.2597 0.8080
CNN 0.9070 0.8275 0.2982 0.8568
RNN 0.9208 0.8374 0.3122 0.8616
RNN+Attn 0.9247 0.8469 0.3246 0.8495
RNN+SelfAttn 0.9234 0.8423 0.3189 0.8581
RNN+TimeAttn 0.9448 0.8740 0.3769 0.8851
START(Gumbel) 0.8825 0.7862 0.2478 0.8237
START(SemanticHash) 0.9465 0.8717 0.3737 0.8968

Bolded values are novel approaches outperforming them.
ROC, receiver operating characteristic.
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sequence learning approaches CNN and RNN, further
strengthening our arguments and literature that sequence
of activities contains useful information for predictive
tasks. Moreover, the best performing baseline across the
board is RNN+Attn yet again, outperforming the self-
attention mechanism as well.

RNN with temporal attention mechanism is the bet-
ter performing approach as compared with baselines
on this data set as well, stably outperforming all of
the baselines by a significant margin. For the START
model, in this experiment, where the same activity rep-
resentations are shared for multiple predictive task,
semantic-hashing hard attention shows the best perfor-
mance overall, similarly as in the binary classification
task. However, in this, more complex experiment, dis-
cretization through Gumbel-softmax could not provide
additional improvement.

We can finally conclude that once a sufficient
amount of patterns in the data are captured through
good modeling choices, such as modeling sequence
and temporal signals, the discretization layers with ap-
propriate assumptions can indeed help reduce the re-
mainder noise in the data with respect to the task
and improve the performance.

Aforementioned experiments show that activities in
users’ trails need to be given in a context of a sequence
with nonuniformly distributed activities where each ac-
tivity can hold different information depending on the
context and the optimization task. Thus, the proposed
temporal and hard attention blocks in the START
model allow for capturing only useful information
from each event in a sequence by mitigating or com-
pletely remove the effects of portions of learned embed-
dings. Analysis of the effects of the two blocks of
the START model will be discussed in the following
experiments.

Analyzing attentions of different models
Finally, we assess the attention values of different mod-
els to provide insights into how models see the data and
how do they cope with the noise through different at-
tention mechanisms by analyzing 100 randomly se-
lected user trails that ended with conversion for the
two advertisers.

Temporal and soft attention analysis. We first analyze
the soft and temporal attention mechanisms. Figure 4a
and b shows soft attentions of RNN+Attn model,
whereas Figure 4c and d shows soft attentions of
START(SemanticHashAttn) model for advertisers A

and B, respectively. We can see a very similar pattern
where for both algorithms soft attention prefers indi-
vidual activities that are closer to the end of the trail.
However, this artifact is most likely observed due to se-
quence modeling of the RNN block squeezing most of
the information in single vectors toward the end of
trails.

For the START model, there are more activities, es-
pecially consecutive ones, highlighted by the algorithm,
especially for the retail advertiser which is to be
expected, whereas for communications advertiser con-
versions tend to happen close to strong predictive sig-
nals. We interpret this difference between models as
the proposed blocks help in preserving information
from activities by removing the noisy bits through the
hard attention block, thus not forcing algorithm to sum-
marize information of sequence in only a few vectors.
Next, in Figure 4c, f, g, and h we show hei and lei

tem-
poral attention parameters for the two advertisers.

Differently from the aforementioned soft attention,
temporal attention, being in the lower parts of the ar-
chitecture, highlights events across the trail with higher
positive values of hei and lower negative values of lei

.
We can see that there are activities that occur earlier
in the trail with significant temporal impact, whereas
there are some activities closer to the conversion
event with lower impact as well. Observing a similar
pattern for all user trails and for both advertisers
shows that the temporal attention mechanism properly
captures both the long- and short-term temporal im-
pact of each activity before the RNN block that models
the sequential process.

Hard attention analysis. We finally show hard atten-
tion scores as learned by the START model using the
semantic hashing technique. We graphically display
them by randomly selecting 9 user activity trails with
a conversion for advertiser A, and plotted the hard at-
tention feature map for 500 activities (with null activity
padded in the beginning) and for each of the 18 dimen-
sions. The plots are shown in Figure 5 where the values
are zeroes or ones as learned by the START model.

We can see that the START algorithm prefers to select
certain dimensions over others, sometimes completely
deselecting an entire dimension for all activities. This
is especially observed for the padded activity. For activ-
ities closer to the conversion point, we see more ran-
domness in dimension selection; however, we almost
never observe that all of the dimensions of activity are
being selected.
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FIG. 4. Various attention score heat maps of events from 100 randomly sampled converters for advertiser A.
(a) Adv A GRU+Attn attention. (b) Adv B GRU+Attn attention. (c) Adv A START soft attention. (d) Adv B START
soft attention. (e) Adv A START hei . (f) Adv A START lei

. (g) Adv B START hei . (h) Adv B START lei
.
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Selecting one or a few dimensions from the activity
embedding means that the algorithm ‘‘learned’’ which
parts of the observed activity signal is particularly use-
ful in the context of the observed user activity trail, as
opposed to using the entire representation and poten-
tially including dimensions that may not be useful for
prediction task or maybe just noise. Nonselected di-
mensions of one activity can be active for another
user’s trail.

Activities collected online often contain less infor-
mation when taken out of the context of the sequence
they were found in; moreover, the same activity can
carry different information for different sequences

and for different optimization tasks. Having a mecha-
nism that is capable of decomposing the available sig-
nal and using only its important parts has a great
impact in annealing the inherent noise in heteroge-
neous signals, ultimately improving the generalization
power of an algorithm. This is the exact benefit of
using hard attention for dealing with noisy activities
data collected from multiplex sources.

Conclusions
In this study, we tackled the problems of modeling user
conversion probabilities for online advertising given ac-
tivity inputs collected across many different sources

FIG. 5. START models semantic hashing hard attention examples of eight user trails. Columns are 18
dimensional representations of 500 events in the activity trail length. Blue and yellow cells represent ones and
zeros assigned to those locations in the user trail feature map.
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ordered in time. Major challenges tackled were (1) learn-
ing to account for time information as collected activities
do not uniformly occur and (2) learning to filter out in-
herent noise in data.

To that end, we exploited the temporal attention
mechanism that learns both time-invariant and time-
dependent effects of each activity and proposed the
hard attention mechanism through discrete layers for
annealing noise inherent in the data that can be learned
in the network using standard optimization techniques.
The two extensions of existing sequence modeling ap-
proach allowed us to obtain significant improvements
across several metrics without any major drawbacks,
thus providing a step forward in the improvement of
the overall conversion prediction systems.
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ads ¼ advertisements

AUC ¼ area under the ROC curve
CNN ¼ convolutional neural networks

DA ¼ display advertising
RF ¼ random forests

RNN ¼ recurrent neural network
RNN+Attn ¼ RNN with attention layer

RNN+SelfAttn ¼ RNN with self-attention layer
ROC ¼ receiver operating characteristic
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