
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Use of disease embedding technique to predict the risk of progression to end-
stage renal disease
Fang Zhoua, Avrum Gillespieb, Djordje Gligorijevicc, Jelena Gligorijevicc, Zoran Obradovicc,⁎

a School of Data Science & Engineering, East China Normal University, Shanghai, China
bDivision of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United
States
c Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, PA, United States

A R T I C L E I N F O

Keywords:
Low-dimensional disease representation
Disease progression
Unsupervised learning
Electronic health records
Chronic Kidney Disease
End Stage Renal Disease

A B S T R A C T

The accurate prediction of progression of Chronic Kidney Disease (CKD) to End Stage Renal Disease (ESRD) is of
great importance to clinicians and a challenge to researchers as there are many causes and even more co-
morbidities that are ignored by the traditional prediction models. We examine whether utilizing a novel low-
dimensional embedding model disease2disease (D2D) learned from a large-scale electronic health records
(EHRs) could well clusters the causes of kidney diseases and comorbidities and further improve prediction of
progression of CKD to ESRD compared to traditional risk factors. The study cohort consists of 2,507 hospitalized
Stage 3 CKD patients of which 1,375 (54.8%) progressed to ESRD within 3 years. We evaluated the proposed
unsupervised learning framework by applying a regularized logistic regression model and a cox proportional
hazard model respectively, and compared the accuracies with the ones obtained by four alternative models. The
results demonstrate that the learned low-dimensional disease representations from EHRs can capture the re-
lationship between vast arrays of diseases, and can outperform traditional risk factors in a CKD progression
prediction model. These results can be used both by clinicians in patient care and researchers to develop new
prediction methods.

1. Introduction

The rapid growth of electronic health records (EHRs) from multiple
sources has led to an increased interest in utilizing EHRs for improving
clinical research, decision-making, and patient management [1]. EHRs
contain patient information collected over time including diagnostic
findings, procedures, medications, and patients’ demographic in-
formation. Such a rich source of patient-specific data often contains
sparse, noisy, heterogeneous and incomplete information. Furthermore
in the EHRs, diseases are typically encoded using ICD-9 (International
Classification of Diseases, Ninth Revision) or ICD-10 coding. These
codes are treated as atomic units and lack the notion of similarity be-
tween diseases, even though codes do have a hierarchical structure.

Chronic Kidney Disease (CKD) is a progressive condition which is
caused by a heterogeneous assortment of diseases and is associated with
multiple comorbidities which can contribute to the progression of the
kidney disease. As a result of this heterogeneity, existing predictive
methods for progression of Chronic Kidney Disease (e.g. [2–5]) typi-
cally are either based on a few demographic factors and lab parameters

or require intensive supervision from domain experts, and miss out on
the advantage of encoding progression based on the latent knowledge
hidden in the observed EHRs. Therefore, data-driven context-aware
approaches that can effectively analyze EHR data are required to obtain
insights for improving the quality of health-care.

In this work, we developed a new framework for predicting the risk
of progression from stage 3 chronic kidney disease (CKD) to the end-
stage renal disease (ESRD) within three years based on the diseases that
co-occur with (or occur before) the diagnosis of stage 3 CKD. The ac-
curate prediction of progression of stage 3 CKD to ESRD is of great
importance as a large portion of patients that have CKD [6,7] will not
progress to ESRD. ESRD carries a high morbidity and mortality [8].
Understanding which patients are at high risk of progression is im-
portant for appropriate referral, accurate prognosis, discussion, and
timely planning for renal replacement therapy (RRT) [9,10]. Further-
more, improved prediction can help identify patients who may benefit
from interventions to slow progression [11].

People with stage 3 CKD have multiple comorbidities that co-occur
with (or occur before) the diagnosis of stage 3 CKD [12]. Although
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many of these comorbidities are redundant, there is a significant di-
versity among them. This heterogeneity represents a challenge for
prediction models. Different from the work of feature selection that
aims to find a smaller set of variables, we explored how to summarize
all of the discrete diagnosis ICD-9 codes, both the redundant ones as
well as the heterogeneous ones, by considering their semantic in-
formation. Motivated by recent work that learns disease phenotyping
through a distributed, neural embedding model [13] from EHRs, we
applied disease2disease [13] model to learn a low-dimensional con-
tinuous representation for each disease, and clustered diseases based on
learned representations, treating the collections of clusters as generated
variables, and then transformed hospitalization records to predictors’
space.

The objective of the present study is to develop and validate a
simple but accurate prediction model that automatically generates a
compact set of interpretable variables from EHRs. The generated vari-
ables contain approximately the same information of the original set of
comorbidities of stage 3 CKD. We analyzed the impact of the generated
variables through a logistic regression model (binary outcomes) and a
cox proportional hazard model (time to ESRD).

The proposed framework can be generalized to other chronic dis-
eases, as the disease representations are learned from EHRs that are
independent of a specific disease. Besides, the variables generated by
the proposed approach are easy to interpret, as they represent groups of
diseases. Since the generated variables summarizes the information of
relevant diseases, the dimension of variables was highly reduced which
is of high importance for applicability of the proposed methodology in
real-world systems where predictions will need to be reviewed by the
physicians on a case-to-case basis.

2. Background and significance

2.1. CKD progression prediction

ESRD is a devastating disease that is associated with a high mor-
bidity and mortality for the patient and puts a significant financial
burden on the health-system [14]. While it is estimated that over 28
million people have CKD, less than 1% develop ESRD every year [8],
this makes it challenging for nephrologists and health care providers to
have appropriate discussions around treatment and prognosis, likely
leading to both overtreatment of non-progressors and under-treatment
of progressors [15].

Previous prediction models [2,16,17] have primarily focused on
laboratory values and basic demographic data routinely collected in a
patient visit. These are well-standardized and are easier to model rather
than the heterogeneous diseases that cause CKD, both systemic and
renal-limited, and the myriad of comorbidities found in these patients
[12]. Furthermore, non-renal comorbidities and those that are a con-
sequence of or exacerbated by kidney disease, may contribute to the
progression of kidney disease [18].

This work takes advatange of EHRs to examine CKD patients’ co-
morbidities. Many CKD patients have Diabetes Mellitus (DM),
Hypertension (HTN) and Peripheral Vascular Disease (PVD) [12,19]
and are at increased risk of hospitalization for stroke and myocardial
infarction. During these hospital stays, these comorbidities are routi-
nely coded. This study aims to incorporating CKD comorbidities to
better predict which patients are at risk for progression to ESRD.

2.2. Medical concepts representations

Learning meaningful representations of medical concepts (diseases,
procedures, medications, etc.) has been an important aspect of data-
driven approaches in healthcare and medicine. Notable approaches
include building disease comorbidity graphs [20,21], formulating EHRs
as temporal matrices [22] or even tensors [23] of medical events for
each patient and finally representing them using the neural families of

models [13,24,25]. The direction that yielded most advancements and
improvements are the neural families of models, in particular models
for learning neural distributed representations of medical concepts
[13,25–27]. They have been shown to perform very well on a variety of
tasks, from computational phenotyping [24], to estimating hospital
quality indicators [28], and predicting patient mortality risk [29]. The
focus of this study is not to develop a new disease embedding tech-
nique, instead, we aim to use these quality embeddings and compare
them against expert level features for the important task of modeling
disease progression.

3. Method

Unlike traditional methods [3,16], which select well-established
factors based on domain knowledge or prior experience as predictors
for disease progression, our approach works in an unsupervised
manner, without relying on explicit knowledge of domain expert. The
framework of the proposed approach is shown in Fig. 1. The first step:
learning the embedded representations of all diagnosis ICD-9 codes by
applying the model disease2disease (D2D) [13] on the whole dataset.
Each discrete ICD-9 code is assigned a low-dimensional continuous
vector. The second step: clustering the comorbidities of stage 3 CKD
based on vector similarity in the embedded space. A clustering algo-
rithm, such as hierarchical clustering, is applied, and the obtained
clusters are taken as candidate predictors. The list of comorbidities of
stage 3 CKD filled with redundant information is summarized into K
compact groups. Each group contains comorbidities that often co-occur
and comorbidities that with similar neighboring diseases. The third
step: transforming inpatients’ hospitalization records into predictors’
space. The resulting matrix (colored in orange in Fig. 1) can be used to
train any classifier. The descriptions of these three steps are in Sections
3.1,2,3.3.

Fig. 1. Graphical summary of the proposed framework. The top-left matrix
shows the set of inpatient care records = p p{ , }M1 which was used to learn
diseases’ embedded representations. Each row represents one inpatient care
record pi, and each entity (colored in green) represents a diagnosis ICD-9 code
contained in pi. ( =M 35, 844, 800 in this study.) The top-right matrix (colored
in blue) contains the embedded representations of all diagnosis codes
d d{ , , }D1 | | which were involved in the M records. The comorbidities of stage 3

CKD are grouped by applying a clustering algorithm into K clusters, which
corresponds to the variables f f, , K1 in the bottom-left matrix. N represents the
number of the selected stage 3 CKD inpatients, whose hospitalization records
are transformed into predictors’ space. The label denotes whether the stage 3
CKD progresses to ESRD within 3 years or not. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)
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3.1. Low-dimensional embedding model

We applied the D2D approach [13] (shown in Fig. 2)) to learn
disease representations in a low-dimensional space. D2D builds on the
idea of a distributed language model word2vec [30] in Natural Lan-
guage Processing (NLP), where the goal is to produce a low-dimensional
continuous vector space in which each unique word is assigned a cor-
responding vector in the space.

The D2D approach adapted the word2vec algorithm to learn disease
representations using EHRs. It treats diseases in EHRs as words, and
each patient’s hospitalization record that contains a sequence of or-
dered diseases as the context of the disease in the record. Let re-
present a set of inpatient care records and D denote a set of possible
diseases in the records . A record p contains a sequence of dis-
eases, that is, =p d d D( , , )i j . The goal of D2D approach is to learn
representations of diseases D in a low-dimensional space by maximizing
the objective function L over the entire set of records , that is,

= +L P d dlog ( | ),
p d p b i b i

m i m
, 0m (1)

where +dm i represents the neighboring disease of the given disease dm,
and b is the length of the context of disease dm. The probability dis-
tribution +P d d( | )m i m is defined using the soft-max function, that is,
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where vd and vd are input and output vector representation of disease d,
and vd

T is the transpose of vd. D| | represents the size of unique diseases in
the set of records . The probability is calculated for b diseases sur-
rounding the ith disease di as shown in Fig. 2, and the entire process is
repeated in a sliding window manner capturing context of entire hos-
pitalization record. Ultimately, diseases which have similar neigh-
bourhoods will be embedded closer in the learned space. Since D| | is
very large, the training process of approximating disease vectors be-
comes computationally expensive. To address the training process
computation time, we have employed the negative sampling technique
[31].

3.2. Distance between diseases

Once the low-dimensional embedded disease representations are
learned, the similarity between any two diseases is calculated by using
cosine similarity, that is,

=sim v v
v v

v v
( , ) .d d

d
T

d

d d
i j

i j

i j (3)

The range of sim v v( , )d di j is [ 1, 1]. Diseases that have similar contexts
(similar comorbidity patterns) will have a larger similarity score even if
they do not co-occur in the same hospitalization record, while diseases
that show different comorbidity patterns (i.e. diseases that tend not to
be diagnosed together) will have lower similarity score.

3.3. Transforming hospitalization records into predictors’ space

Assuming diseases are clustered in K groups G G, , K1 , the corre-
sponding predictors are f f, , K1 . Let ck represent the center point of the
cluster G k K( )k . The embedded representation of ck is the averaged
vector of diseases belonging to the cluster Gk, that is,

=v vc G d G d
1

| |k k i k i. Next, we present one way to transform the hospi-
talization records i of the ith inpatient into predictor space, which
calculates how similar the diseases in inpatient records i are to cluster
centers.

The ith inpatient’s hospitalization records i is a set of records which
contains t previous hospitalization records of the ith inpatient and the
record p that contains the stage 3 CKD diagnosis, that is,

= p p p{ , , , }i t t( 1) . p t denotes the tth record that was prior to the
record p. The diagnosed diseases of the ith inpatient, except stage 3
CKD, are the union of diseases in the records i. Given the ith inpatient’s
hospitalization records i, the value of the generated predictor fk is
defined as the maximum similarity among similarities between the in-
dividual diagnosed disease in i and the center point ck.

= >f sim v v sim v v( ) max ( , ), ( , ) 0.k i
d d G

d c d c
andm i m k

m k m k (4)

For each diagnosis code dm in the records i, if dm belongs to the group
Gk, then the similarity between dm and ck is calculated based on the Eq.
(3). If <sim v v( , ) 0d cm k , it will be discarded. Note that if none of disease
codes in the records i belong to the cluster Gk, then the value of the
generated predictor f ( )k i is 0. An illustrated exampled is shown in
Fig. 3. Using the maximum similarity to compute predictors’ values will
result in a sparse matrix.

Fig. 2. Graphical summary of the D2D approach projecting a central disease di
to surrounding ones + +d d d d{ , , , , , }i b i i i b1 1 from a discharge record.

Fig. 3. An illustrated example of transforming an inpatient’s records into pre-
dictors’ space. Suppose the ith inpatient had two records p 1 and p. The record
p 1 contains diseases d d d, ,1 3 6 and d20, and the record p involves diseases
d d d d, , ,2 3 16 20 and d32. i is the union set of diseases present in the records p 1
and p, and is transformed into predictors’ space of dimension K through the
function f ( )k i . The dashed arrow represents which cluster a disease belongs to.
For example, d3, d6 and d20 belong to the fourth cluster. According to Eq. (4), the
value of f ( )i4 is the maximum similarity between the diseases d3, d6 and d20 and
the center point of the fourth cluster. The value of f ( )i2 is zero, since none of
diseases in i belongs to the. second cluster.
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4. Experiment

4.1. Study population

The study cohort was derived from the State Inpatient Database1

(SID) provided by the Healthcare Cost and Utilization Project (HCUP),
containing inpatient care records in California. In total, there are
35,844,800 discharge records from 474 hospitals over a period of
9 years (from January 2003 to December 2011). Each patient record
contains up to 25 ICD-9 codes, as well as the patients’ demographic
information, such as gender, age and race.

We selected inpatients who satisfied two conditions: (1) have a
hospitalization record that contains stage 3 CKD diagnosis (ICD-9
585.3); (2) have at least 3 records, prior to the initial CKD 3 record, that
do not contain stage 3 CKD diagnosis. The start of observation was the
date of the initial record that contains stage 3 CKD diagnosis. Patients
were censored at the earliest of death or the last record of a visit in SID.
The observation time for each patient was computed as the number of
days between the start of observation and the end date. We further
selected two groups of inpatients. The first group (high-risk cohort)
contains 1,375 inpatients who were later diagnosed with ESRD (ICD-9
585.6) within 3 years. The second group (low-risk cohort) consists of
1,132 inpatients whose CKD remains at stage 3 for more than 3 years.
The demographic information of inpatients is shown in Table 1. The age
information is the one recorded at the start of observation time.

4.2. Experimental setup

We first applied D2D approach [13] to more than 35 million in-
patient records in the SID to obtain the learned representations of all
diseases, and then considered two scenarios to generate variables.
Scenario 1: Clustering comorbidities of stage 3 CKD into K groups. The
number of comorbidities being clustered is 2,135. The assumption is
that CKD comorbidities are more relevant to the CKD progression.
Scenario 2: Clustering diseases that are present in up to three previous
records into K groups. The rationale of choosing up to three previous
records is that inclusion of more than three previous records does not
significantly improve prediction accuracy [32]. The number of diseases
increased to 3,281.

We applied hclust (R function, parameter “method” is set as
“average”) to perform a hierarchical cluster analysis for the diseases.
The cluster number K is determined through Davies-Bouldin index [33],
which is an internal evaluation metric to measure the quality of the
clustering. A group of clusters with a small Davis-Bouldin index is
considered as a good clustering result. We used clusterCrit R package
[34] to compute the Davis-Bouldin index, and set K as 58 for Scenario 1
and K as 92 for Scenario 2.

We compared the performance of the proposed model with four
alternatives. Table 2 lists the independent variables included in the five
models.

• The Model_1 [2] included age, gender and five lab parameters which
are Bicarbonate, Calcium, Protein, Parathyroid Hormone and Urine
Protein Creatinine.

• The Model_2 [4] considers eleven lab parameters. Compared with
Model_1, Model_2 takes into consideration extra five variables,
which are 25-OH Vitamin, Hematocrit, Potassium, Sodium and
Triglyceride.

• The Model_3 considers eleven lab parameters from Model_2 and
eight groups of diagnoses of diseases that are primary cause of
ESRD.2

• The Model_4 takes all diseases that co-occur with the initial stage 3
CKD diagnosis into account. In total, there are 2,135 diagnoses. We
compared the proposed model with Model_4 to check whether the
generated variables lose some information or not.

Since SID does not contain patients’ lab results, the lab variables
were transformed to the corresponding diagnoses based on whether the
values of lab variables are high or low (see Table S1). For example,
polycythemia corresponding to the high value of hematocrit is one
variable which consists of ICD-9 238.4 (Polycythemia vera), 289.0
(Polycythemia; secondary) and 289.6 (Familial polycythemia). If any of
these three ICD-9 codes occurs in the patient record, then the value of
the variable “polycythemia” is 1, otherwise, it is 0.

We conducted 30-fold cross validation experiments to evaluate
models’ performance, using a regularized generalized linear model (R
package glmnet) [35] with = 1 (lasso regularization) for classifica-
tion and Cox proportional hazards model (R package survival) [36] for
time to ESRD.

5. Results

5.1. Comorbidity diversity

The patients had a diverse array of comorbidities. For example, in
the high-risk cohort, 1,680 unique comorbidities were present in 1,375
patients’ records. Among them, only 7 comorbidities were present in
more than 300 patients’ records, and 690 comorbidities (41%) ap-
peared just once. The high-risk cohort had notably more congestive
heart failure and acute kidney injury, diabetes that required long-term
insulin use and anemia of chronic kidney disease. In contrast the low-
risk cohort had more Esophageal reflux, history of myocardial infarc-
tion, history of smoking, and hypothyroidism (see Table S2). This re-
flects diversity, redundancy and heterogeneity issues in EHRs. This is
the reason why the dimension of variables in the Model_4 is large
(K = 2,135) and the resulting matrix is sparse, often bringing chal-
lenges to classifiers and results are not easy to interpret which is of high
importance for physicians to use a system as the one proposed in this
study in real-world scenarios.

5.2. Prediction performance of models

We applied a logistic regression to examine the predictive perfor-
mance of five models. Table 3 lists the classification accuracy of 30-fold
cross validation. The proposed model outperformed the Model_1,
Model_2 and Model_3. For example, when only the record p which
contains the stage 3 CKD diagnosis is available, the accuracy obtained
by the proposed model increased up to 8% compared with Model_1, and
up to 4% compared with Model_2 and Model_3.

Table 1
Basic characteristics of the cohort.

Characteristic High-risk cohort
(n = 1,375)

Low-risk cohort
(n = 1,132)

P value of
difference between

two cohorts

Age, median 67 75 < 0.001
Male, No. (%) 729 (52%) 501 (44.3%) < 0.001
Race, No (%) < 0.001

White 622(45.9%) 717(63.3%)
Black 187 (13.8%) 118 (10.4%)

Hispanic 439 (32.4%) 207 (18.3%)
Asian 106 (7.8%) 68 (6%)

Unknown 21 (1.52%) 22 (1.94%)
Death, No. (%) 482 (35%) 94 (8.3%) < 0.001

Death Time, Mean 1.48 years 3.69 years

1 https://www.hcup-us.ahrq.gov/db/state/siddbdocumentation.jsp.

2 https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/downloads/
cms2728.pdf.

F. Zhou, et al. Journal of Biomedical Informatics 105 (2020) 103409

4



Age and gender are two extra variables. Incorporating age and
gender variables with other variables in the proposed model did not
improve the classification accuracy. However, the accuracy increased
up to 6% when concatenating age and gender variables with other
variables in the Model_1 especially and increased 1%-5% in the
Model_2 and Model_3. This indicates that the variables used in the
proposed model already contains information that is relevant to age and
gender. In the case age and gender information are missing, the su-
periority of the proposed model is obvious.

We noticed that the accuracies obtained by the proposed model are
not significantly different (p-value > 0.05) from the ones obtained by
the Model_4. This provides evidence that the proposed model is able to
summarize the information of all comorbidities by using the less
number of variables. The dimension of variables is largely reduced,
which decreases the computational time of classifiers and further im-
proves the interpretability of the model. Furthermore, taking into

account previous records, p p p, ,3 2 1, did not improve the classification
accuracies of five models.

5.3. An analysis of variables

We applied a cox proportional hazards model to study the associa-
tion between the individual variables and time to ESRD. Since the
number of variables in Model_4 is more than two thousands and the
proposed model well summarizes the information of all comorbidities
in the Model_4 (see. Section 5.2), we focus on studying the variables in
Model_1, Model_2, Model_3 (Table 4) and the proposed model
(Table 5). Table 4 shows the log hazard ratios of variables that sig-
nificantly predict progression to ESRD in the Model_1, Model_2 and
Model_3 respectively. In all three models, younger age and male gender
(gender variable is set 0 for male, and 1 for female) were associated
with increased risk of progression.

Table 2
Independent variables for the five models.

Variables Model_1 Model_2 Model_3 Model_4 Our model

Age
Gender

Lab variablesa 25-OH Vitamin D
Bicarbonate

Calcium
Hematocrit
Potassium

Sodium
Total Protein

Parathyroid Hormone
Triglyceride

Urine Protein Creatinine
Uric Acid

Causes of ESRD Diabetes
Glomerulonephritis

Secondary GN
Interstital Nephritis

Hypertension
Cystic, Hereditary

Neoplasms
Miscellaneous Conditions

ICD-9 codes
Clusters

a BUN, Chloride, Magnesium, and Phosphate are not included, as ICD-9 codes could not distinguish the low or high values of these variables.

Table 3
The classification accuracy (mean ± standard deviation) of the five models from logistic regression. K represents the number of predictors used.

Logistic regression model (age and gender variables are incorporated)

Records used The proposed model Model_4 Model_1 Model_2 Model_3

Scenario 1 (K = 58) Scenario 2 (K = 92) (K = 2,135) (K = 6) (K = 19) (K = 27)

p{ } 0.68 ± 0.05 0.69 ± 0.05 0.70 ± 0.06 0.61 ± 0.05ab 0.65 ± 0.05a,b 0.65 ± 0.05a,b

p p{ , }1 0.68 ± 0.04 0.69 ± 0.05 0.70 ± 0.07 0.61 ± 0.05a,b 0.66 ± 0.05a,b 0.65 ± 0.05a,b

p p p{ , , }2 1 0.68 ± 0.05 0.69 ± 0.04 0.70 ± 0.06 0.61 ± 0.07a,b 0.65 ± 0.04a,b 0.66 ± 0.05a,b

p p p p{ , , , }3 2 1 0.68 ± 0.05 0.71 ± 0.05 0.69 ± 0.05 0.61 ± 0.06a,b 0.66 ± 0.05b 0.67 ± 0.07b

Logistic regression model (age and gender variables are not incorporated)
Records used The proposed model Model_4 Model_1 Model_2 Model_3

Scenario 1 (K = 58) Scenario 2 (K = 92) (K = 2,135) (K = 6) (K = 19) (K = 27)
p{ } 0.68 ± 0.07 0.68 ± 0.04 0.68 ± 0.05 0.55 ± 0.06a,b 0.64 ± 0.05a,b 0.64 ± 0.05a,b

p p{ , }1 0.66 ± 0.04 0.67 ± 0.05 0.69 ± 0.04 0.55 ± 0.04a,b 0.64 ± 0.06a,b 0.64 ± 0.06a,b

p p p{ , , }2 1 0.66 ± 0.05 0.68 ± 0.05 0.70 ± 0.05 0.55 ± 0.05a,b 0.63 ± 0.06a,b 0.63 ± 0.05a,b

p p p p{ , , , }3 2 1 0.67 ± 0.04 0.68 ± 0.06 0.70 ± 0.05 0.55 ± 0.04a,b 0.62 ± 0.06a,b 0.62 ± 0.05a,b

a The accuracy obtained from Scenario 1 is more accurate (p-value < 0.05) than the one obtained by the compared model.
b The accuracy obtained from Scenario 2 is more accurate (p-value < 0.05) than the one obtained by the compared model.
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In the Model_2, laboratory variables associated with a higher risk of
progression from stage 3 to ESRD include low value of Bicarbonate (p-
value = 0.006), low value of Hematocrit (p-value < 0.001), low value
of Protein (p-value = 0.002), high value of Parathyroid Hormone (p-
value = 0.002), high value of Potassium (p-value < 0.001) and high
value of Urine Protein creatinine (p-value = 0.03). High value of
Triglyceride (p-value < 0.001) and high value of Uric Acid (p-
value = 0.02) predicted non-progression. The results are consistent
with the ones in [4].

In the Model_3, besides those laboratory variables which were
identified associated with risk by the Model_2, the Model_3 found the
elevated levels of Calcium (p-value = 0.03) and Sodium (p-
value = 0.04) were associated with increased risk of CKD progression.
Furthermore, Glomeurolenphritis (p-value < 0.001) and Neoplasms
(p-value = 0.006) were found to be associated with higher risk of
progression.

Table 5 presents the clusters generated by our model that statisti-
cally significantly predict progression to ESRD. Younger age was still
associated with increased risk of progression; however, gender variable
was not statistically significantly associated with the target variable.
The following clusters were associated with increased risk of progres-
sion: GN (Glomerulonephritis) and Organ TX (Transplant) (C_0), Dia-
betes (C_1), HTN (Hypertension) (C_11), BMI (Body Mass Index) (C_14),
Anemia and GI (Gastrointestinal) (C_2), Hematuria and DNR (Do Not
Resuscitate Code) (C_41), Multiple Myeloma (C_43), Sepsis (C_5), Cir-
rhosis (C_9). The following clusters were associated with decreased risk
of progression: Obesity and Sleep Apnea (C_12), Spine and Nerve
(C_15), Hips, Eyes and Skin (C_16), Thyroid (C_22), Psychiatric (C_24),
Benign Gyn (Gynecologic) and Family Hx (history) (C_28), Asthma
(C_29), Hematuria2 and Hematologic (C_6).

6. Discussion

We have developed a novel CKD progression prediction model
which clusters the causes of kidney diseases and the multiple co-
morbidities that affect people with kidney disease. This represents an
advancement to previous prediction models that were based on de-
mographic characteristics and laboratory parameters. Based on our
framework we can predict which CKD patients are at high risk for
progression to ESRD after a hospital admission and may benefit from
intensive follow-up. Additionally, healthcare providers can use this
predictive model to help tailor discussions with patients about their risk
for CKD progression and the chances of developing ESRD.

Table 4
Log hazard ratios of variables from cox proportional hazard model.

Variables Model_1 Model_2 Model_3

Age 0.008 0.007 0.007
Gender 0.09 0.1 0.09

Lab vari-ables Bicarbonate (Low) 0.2 0.118 0.1
Bicarbonate (High) 0.24

Calcium (High) 0.33 0.3
Hematocrit (Low) 0.21 0.2

Parathyroid Hormone
(High)

0.24 0.2

Potassium (High) 0.19 0.18
Total Protein (Low) 0.26 0.18 0.17

Sodium (High) 0.16
Triglyceride (High) 0.1 0.1

Uric Acid (High) 0.11 0.11
Urine Protein creatinine

(High)
0.13 0.13 0.15

ESRD Causes Glomerulonephritis 0.16
Neoplasms 0.18

∗: p-value < 0.05, ∗∗:p-value < 0.01, ∗∗∗: p-value < 0.001.
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Previous prediction models have relied heavily upon laboratory
parameters and have treated them as individual risk factors in a tra-
ditional Cox proportional-hazards model [2,3,16,17,37]. Quantifying
and incorporating the multiple comorbidities that are associated with
CKD is challenging, because patients with chronic kidney disease tend
to have the highest number of comorbidities and complexity [38].
Using unsupervised learning, the proposed model was able to identify
clusters of causes of kidney diseases that were associated with pro-
gressive kidney disease and well summarized the information of CKD
comorbidities (see Table 3). The proposed model highly reduced the
dimension of comorbidities, which helps clinicians more easily inter-
pret the prediction results. Furthermore, this cluster of heterogeneous
disease outperformed modeling the diseases using the specification
currently accepted designation of the CMS 2728 (Centers for Medicare
and Medicaid Services form 2728, which is the ESRD medical evidence
report medicare entitlement). This model not only allows for the pre-
diction of progression of CKD at the patient-level, but also identifies
classic and novel comorbidities associated with progression of CKD
which are potentially modifiable and may lead to new biologic dis-
coveries.

One such novel cluster was the C_0 which identified patients with
solid organ transplants both renal and otherwise. These patients had a
high risk of progressing to ESRD if they were admitted to the hospital
with CKD. They were in the same cluster of chronic glomerulonephritis
which has been shown to have a high risk of progression [39]. It is
unclear whether this solely related to the side effects of calcineurins
[40], the diseases that caused the organ failure, or comorbidities as-
sociated with solid organ transplant. Additionally, this cluster can be
used to predict three year allograft survival in patients with renal
transplants and stage 3 CKD, which has been a challenge using tradi-
tional models [37].

Clusters that contained Diabetes Mellitus type 1 and 2 (C_1), severe
hypertension (C_11) [2] and anemia (C_2) [4] were associated with a
high risk of progression. Clusters with severe sepsis and acute kidney
injury (C_5) [41], multiple myeloma and pathological fracture (C_43)
[42], and cirrhosis predicted a high risk of progression (C_9) [43]. This
clustering method however did not differentiate between hepatorenal
syndrome and glomerulonephritis associated with the viral hepatitis
[44]. The disease clusters are useful for practitioners to identify which
patients will require close follow-up.

The clustering method also identified clusters that predicted non-
progression of CKD. Several of these clusters were associated with older
age and female sex. Clusters 15 (spine and nerve) as well as 16 (hip,
eyes, and skin) were conditions related with older age whereas cluster
28 was female specific as it mostly contained gynecological diagnoses.
This may explain why including age and sex variables improved the
performance of alternative models but did not improve the performance
of the proposed model, as age and sex information were already re-
presented by clusters. This in turn shows the superiority of the proposed
model when some sensitive information of patients, such as age and
gender, are missing. Older patients tended to be in the non-progressor
cohort and may not have had true progressive CKD but rather age-re-
lated nephron loss [45]. This finding of gynecological problems being
associated with a low risk of progression was reported in an article [4]
that applied a LDA (Latent Dirichlet allocation) model to analyze the
texts of CKD patients medical charts. The cluster (C_22) associated with
thyroid disease predicted non-progression, there CKD may be a result of
decrease glomerular filtration rate (GFR) from hypothyroidism that
improves with thyroid hormone replacement [46]. Asthma and viral
pneumonias (C_29) predicted non-progression which is also similar to
the findings of Perotte et al. [4]. Patients with asthma and viral pneu-
monia were likely not as ill as the patients with sepsis and respiratory
failure. Of note, while psychiatric illness is common among patients

with advanced CKD and ESRD [47], the psychiatric diagnoses (C_24)
are not predictive of progressive disease. Future research should focus
on how to integrate mental health care and CKD/ESRD care.

The goal of the paper was to find clusters of diagnoses associated
with CKD progression and not to identify plausible biologically inter-
pretable risk factors. That being said our method has grouped patients
that progress rapidly and represent areas of future mechanistic re-
search. For example, why are some patients who are on calcineurin
inhibitors progress rapidly while others do not? Perhaps there is a ge-
netic link to other glomerulonephritides. Another area of research is
why some clusters such as autoimmune thyroiditis,
Sopondylarthopathies, and giant cell arteritis were associated with a
low risk of progression. Future work should improve disease re-
presentations by integrating biological information, such as the asso-
ciation between diseases and genes (and proteins).

Although there is a current trend for disease phenotyping using the
EMR and disease coding, we noticed some inherent problems of using
ICD-9 coding as the same apparent disease can be coded differently and
is subject to the bias of the person entering the ICD-9 code. For ex-
ample, in the clustering model, hematuria that clusters with patient
being overweight and restrained and refusing care (C_41) predicted
progressive CKD, however, an older code for hematuria associated with
hematologic diagnoses (C_6) predicted non-progressive CKD. This dis-
crepancy may reflect that the latter group had non-glomerular hema-
turia [48]. Not only did a diagnosis for being overweight appear in the
aforementioned hematuria cluster (C_41), but also in a cluster asso-
ciated with sleep apnea (C_12) and a cluster associated with actual
measurement of BMI (C_14). While glomerular disease associated with
obesity and hypoxia has been previously described [49], it is not cap-
tured in this cluster. Furthermore, our findings reflect the corpus of
literature which doesn’t always find an association with being over-
weight/obese and progressive kidney disease [50]. Lastly, diabetic re-
tinopathy was clustered with other ophthalmologic conditions (C_16)
and was associated with non-progressive CKD. While there is a strong
association with diabetic retinopathy and diabetic nephropathy, this
cluster may represent the subset that do not have diabetic nephropathy
[51], the coding is better. Another possible explanation is that since
they are getting ophthalmologic care, they are getting other preventive
care that slows the progression of their kidney disease.

Our framework has several other limitations. While we used a large
state hospital database to examine over 2000 comorbidities it is pos-
sible we missed patients that rely only on ambulatory or outpatient care
or were only hospitalized once before the diagnosis of ESRD. Using only
hospital records, we may be oversampling patients that are more ill and
are frequently hospitalized or have barriers to receiving outpatient care.
We also are missing patients that had no medical care before the di-
agnosis of ESRD. These patients probably represent a small proportion
of the whole as CKD patients tend to be disproportionately hospitalized
[52]. Another limitation is that the proposed model did not use direct
laboratory measurements. That being said, the diagnoses hyperkalemia,
secondary hyperparathyroidism and anemia are diagnoses based on lab
parameters that are known to be predictors of progression [16] and
were part of clusters associated with progressive kidney disease. Fi-
nally, whenever examining medical record data there is always a
chance for incorrect coding [53].

The advantage of this study was that it used records from a large
hospital system. This gave us the ability to develop unique disease
clusters. The data is publicly available and the model can be replicated.
Even though this work focused on CKD progression, our model can be
applied to other disease progression problems (e.g. [29,54]). Research
is necessary to see if the model can be improved with outpatient data,
including individual measurements such as blood pressure as well as
subjective measurements. Additionally, future research is needed to
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examine whether the increased specificity of ICD-10 codes improves
prediction.
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