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A B S T R A C T

Introduction: The objective of this study is to improve the understanding of spatial spreading of complicated
cases of influenza that required hospitalizations, by creating heatmaps and social networks. They will allow to
identify critical hubs and routes of spreading of Influenza, in specific geographic locations, in order to contain
infections and prevent complications, that require hospitalizations.
Material and methods: Data were downloaded from the Healthcare Cost and Utilization Project (HCUP) – SID,
New York State database. Patients hospitalized with flu complications, between 2003 and 2012 were included in
the research (30,380 cases). A novel approach was designed, by constructing heatmaps for specific geographic
regions in New York state and power law networks, in order to analyze distribution of hospitalized flu cases.
Results: Heatmaps revealed that distributions of patients follow urban areas and big roads, indicating that flu
spreads along routes, that people use to travel. A scale-free network, created from correlations among zip codes,
discovered that, the highest populated zip codes didn’t have the largest number of patients with flu complica-
tions. Among the top five most affected zip codes, four were in Bronx. Demographics of top affected zip codes
were presented in results. Normalized numbers of cases per population revealed that, none of zip codes from
Bronx were in the top 20. All zip codes with the highest node degrees were in New York City area.
Discussion: Heatmaps identified geographic distribution of hospitalized flu patients and network analysis
identified hubs of the infection. Our results will enable better estimation of resources for prevention and
treatment of hospitalized patients with complications of Influenza.
Conclusion: Analyses of geographic distribution of hospitalized patients with Influenza and demographic char-
acteristics of populations, help us to make better planning and management of resources for Influenza patients,
that require hospitalization. Obtained results could potentially help to save many lives and improve the health of
the population.

1. Introduction

Infectious diseases, like influenza, can have devastating con-
sequences on populations. Influenza is associated with substantial
morbidity and mortality [1]. In addition to clinical impact, Influenza
has significant economic impact. Starting from 2010, each year CDC
estimates the burden of influenza. The burden of influenza disease in
the United States can vary widely and is determined by a number of
factors including the characteristics of circulating viruses, the timing of
the season, how well the vaccine is working to protect against illness,
and how many people got vaccinated. CDC [2] estimates that influenza
has resulted in between 9.3 million and 49.0 million illnesses, between
140,000 and 960,000 hospitalizations and between 12,000 and 79,000
deaths annually since 2010. The estimated number of flu illnesses

during the 2017–2018 season was 49 million, flu hospitalizations –
960,000, and flu deaths – 79,000.

Standard medical treatments and vaccines are often not sufficient to
stop flu infections. Equally important, is to understand how the pa-
thogen spreads in the population [3]. Understanding the nature of
human contact patterns is crucial for predicting future pandemics and
developing effective control measures [4]. Explorations of spatio-tem-
poral spread are also, very important in order to explain, are Influenza
infections more spatially synchronized and widespread in populous
highly connected areas, compared to smaller, more isolated ones [5].
Reasons for geographical trends of spreading of Influenza could be
explained in terms of population size, connectivity and demographics.
Understanding the spatio-temporal spread of infectious disease is im-
portant both for design of control strategies and to deepen fundamental
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knowledge about the interaction between infectious diseases dynamics
and spatial mixing of the population [6]. It’s important to locate geo-
graphic hotspots (so called hubs) for Influenza infections [7]. Analyses
of geographic distribution of Influenza and demographic characteristics
of geographic hotspots, help us to make better planning of hospital
resources for complicated cases of the flu and better management of
health-care systems. Environmental factors, population sizes and, de-
mographics, are major determinants in disease spread and potential
complications, which can result in admissions to hospitals. Influenza
causes many complications, that can worsen the disease, require hos-
pitalizations and complicate outcomes. Respiratory, cardiovascular,
digestive system and other complications have been studied [8–10].

The objective of this research is to develop a novel method, that
leverages options of heatmaps and network science in explanations of
spatial distribution of patients with complications of Influenza. The
goal is to visualize complicated flu cases throughout the particular
geographic region. Public health experts, doctors, and other medical
scientists, by using the results of the visualization tools, like heatmaps,
could rapidly recognize, how flu cases are distributed, and how they
expand geographically. This knowledge would help them plan re-
sources for earlier detection of flu and reduce the future impact of in-
fluenza [11]. Further, we will utilize network science options to analyze
correlations among zip codes of the NY state, considering numbers of
hospitalized flu cases over the 10 years period. The goal is to show
observed and calculated correlations in the network, as nodes (zip
codes) linked, based on strength of correlations. That will allow cal-
culation of nodes degrees, with the objective to find the most connected
nodes and hubs, based on results of these network centrality measures.
Adequate measures should be applied to isolate (treat) zip codes that
represent discovered hubs in order to decrease the number of compli-
cated flu cases in the future. The final objective is to present results of
our novel method to health professionals and researchers, which will
help them to plan adequate resources to contain flu infection and pre-
pare appropriate hospital resources for patients with complications.
Results could potentially save many lives and improve the health of the
population. The experiments were conducted on the state of New York
data, but the proposed method is scalable and could easily be gen-
eralized to any other geographic region in the U.S. and all over the
world.

1.1. Background and significance

According to Centers for Disease Control (CDC), seasonal influenza
infects approximately 5–20% of the U.S. population every year [12].
Connections between Influenza and networks is a well-studied topic,
that dates back to the mid-1980s and many papers describe the asso-
ciation between influenza and networks. To assess the influence of
network effects, the predictions were compared, from the detailed
network model, consisting of fixed contacts of known weights, to sev-
eral simplified alternatives [4]. Spatial spread of influenza infections
and geographic transmission hubs were analyzed and described in re-
cent publications [5–7]. Numerous research studies evaluated the risk
and development of complications associated with influenza virus in-
fections [8,9]. Many of those complicated cases require a hospital
treatment. Researchers described influenza-associated critical illness
hospitalizations [10]. Demographic factors associated with influenza
A(H1N1) infection have been studied [13,14]. Many authors assessed
the network configuration, network stability, and changes in risk con-
figuration and risk behavior, using social network analysis and visua-
lization techniques. The evolving science of social networks has evident
potential to help researches to explain the spread of infectious diseases
[15]. Gligorijevic and colleagues studied the importance of the con-
fidence of predictions in longer-term forecasting in health and climate
domains [16]. They presented an effective novel iterative method de-
veloped for Gaussian structured learning models, for propagating un-
certainty in temporal graphs, by modeling noisy inputs (most of inputs

in the field of infectious diseases). Good planning of hospital resources
will also need a prediction of length of hospital stay, for individual
patients, in addition to prediction of numbers of potential hospitaliza-
tions. Stojanovic and collaborators described how to learn low-dimen-
sional vector representations of patient conditions and clinical proce-
dures in an unsupervised manner, and generate feature vectors of
hospitalized patients, useful for predicting their length of stay, total
incurred charges, and mortality rates [17]. Barabasi and Kleinberg
published robust analytical and numerical framework to mathemati-
cally model the spread of pathogens [18,19]. Meyer developed power
law models to better capture dynamics of infectious disease spread
[20]. He demonstrated power law model frameworks and spatial dis-
tribution heatmaps on meningococcal bacterial meningitis in Germany
and on influenza virus infections in the Southern Germany. Many pa-
pers described social network applications and geographical distribu-
tions in explaining of other diseases besides human types of Influenza.
Poolkhet in his study described social network analysis for assessment
of avian influenza spread and trading patterns of backyard chickens in
Thailand [21]. Song and colleagues used Pearson’s correlation to
measure the impact of socioeconomic factors on AIDS diagnosis rates in
certain geographic areas. Their correlation-based method discovered
the complexity of contribution of socio-demographic determinants of
health and geographic area based measures to AIDS diagnosis [22].

In our study, we proposed a novel method for better understanding
of geographical distribution of hospitalized Influenza cases in a specific
geographic region, using the combination of geographically specific
heatmaps and social network analysis. A combination of social network
analysis and visualization of findings on interactive geographical
heatmaps is a novelty, that provides quick and efficient information
about hubs and spatial distribution of hospitalized flu patients. We
calculated correlations among zip codes in the state of New York. Zip
codes represent specific geographic localities in a specific state, with
very characteristic demographics in each of them. Our research used
detailed demographics from 2010 Census. If we consider that the par-
ticular zip code has specific demographic characteristics, then we can
assume that the specific geographical location of the zip code and de-
mographic characteristics, affect numbers of cases and hospitalizations
of Influenza. We then find correlations of these zip codes, knowing that
actually we calculate correlations of numbers of cases affected by
geographic locations and demographic characteristics of zip codes.

We took a period of 10 years, since we can draw conclusions about
distribution of Influenza cases in so long period. Based on our findings
we can expect similar patterns in the next decade.

In order to visualize findings, our method uses contemporary
Google maps as the base for heatmaps. Researchers can clearly see
names of cities, roads, rivers, mountains. Visualization is more effective
than description of regions, because researches who are not familiar
with all places in one state, can quickly see where the cities are located,
how are they connected (highways, roads) and are any geographic
features (mountains, lakes, etc) between nearby cities that can slow
down spread of infections between 2 cities. This is especially effective if
sites are not connected with direct roads.

Our novel method, proposed in this study, is a different metho-
dology from previously published approaches. We constructed heat-
maps, that show distribution of flu patients in NY state, which enable
easy and fast visualization of zip codes, that are the most affected by flu
infection, as well as visualization of the most likely routes of Influenza
spreading. We performed a network analysis of distributions of patients
through zip codes, where nodes represent affected zip codes and links
represent correlation among zip codes. Designed network allows cal-
culation of centrality measures, aimed to provide discovery of hubs and
significance of individual zip codes. These findings could help medical
professionals to improve planning of resources, needed to treat flu in-
fections and complications and to better allocate resources. Our ap-
proach will provide fast and accurate understanding of Influenza in
specific geographic areas, which can be the size of one or more states or

B. Ljubic, et al. Journal of Biomedical Informatics 93 (2019) 103161

2



more countries. Detailed heatmaps will locate regions, that need the
most resources for medical intervention. Our model provides more
geographic details about the distribution of flu infection, than pre-
viously published research.

We conducted our research on Healthcare Cost and Utilization
Project (HCUP) data for the period of 10 years, and we recommend
further study of geographical distribution of Influenza on more different
datasets in order to better understand geographical distribution of
hospitalized influenza patients and what demographic and socio-eco-
nomic factors contribute to that distribution.

2. Material and methods

Proposed is a novel method for better understanding of geo-
graphical distribution of hospitalized Influenza cases in New York state,
using the combination of geographically specific heatmaps and social
network analysis. We analyzed data from the HCUP, the State Inpatient
Databases (SID). HCUP is a family of health care databases that contain
data of State data organizations, hospital associations, private data
organizations, and the Federal government. The HCUP includes the
largest collection of longitudinal hospital care data in the United States
and contains information on inpatient stays, emergency department
visits, and ambulatory care. The SID are state-specific files that contain
all inpatient care (hospital) records in participating states. The State-
specific SID encompass more than 97 percent of all U.S. hospital dis-
charges.

Data for this project were downloaded from HCUP - SID New York
State inpatient database. We downloaded and analyzed data regarding
the influenza infections for the period of 10 years (2003–2012). There
were 30,380 cases of influenza registered in the database. Those were
patients who required a hospital admission and stay, due to more severe
flu or presence of complications.

Influenza cases were depicted on the bar-plot and visualized on
heatmaps. We further analyzed these heatmaps with absolute numbers
of hospitalized flu patients, to study activity and spatial spreading of
the flu. We, also, normalized absolute numbers of patients over the
population in each of zip codes. Normalization of results helped us
discover which zip codes were the most prune to flu infections. In
order to conduct the study, we used demographic data from the
Census Bureau from the last census conducted in 2010. Census de-
mographic data match the period of the processed data from HCUP
databases. We analyzed a percentage of the population affected by
severe flu complications that required hospitalizations. We normal-
ized the number of patients per number of people who lived in in-
dividual zip codes to obtain percentages of affected population per zip
code.

Next, we constructed a power-law type network. Statistical analysis
was performed to determine if the network follows power-laws. A
Kolmogorov–Smirnov test was conducted, at the significance level of
0.05. We created a function to estimate the exponent and to plot the
log–log data and the fitted line. Networks whose degree distributions
follow a power law are called scale free networks. The probability of
observing high-degree nodes, or hubs, is very high in this type of net-
work. Scale-free networks, also, have a large number of small degree
nodes that tend to connect among themselves and are virtually absent
in a random network.

In order to utilize network analysis of the geographic distribution of
flu patients, we constructed a matrix (1471 rows and 12 columns). The
rows represent 1471 zip codes in the state of NY, from which, patients
were registered in the HCUP-SID database. The columns represent
12months. Suitable for analysis of the flu distribution, through zip
codes, was the weighted signed correlation network. To form this net-
work, we constructed a 1471×1471 matrix with the aim of calculating
the correlation between zip codes. Pearson’s correlation (r) was calcu-
lated between pairs (x,y) of zip codes (Formula (1)).

=r
x x y y

x x y y
( ¯)( ¯)

( ¯) ( ¯)
i i

i i
2 2 (1)

We constructed the network from Pearson’s correlations of numbers
of complicated flu cases among zip codes. The network is first re-
presented as a weighted correlation adjacency matrix.

For detailed network analysis we chose 100 zip codes, with the
largest number of patients (70 and more), due to privacy protection of
patients. The correlation was calculated among top 100 zip codes. The
adjacency matrix, A[ij], encodes whether and how a pair of nodes is
connected. For weighted networks, the adjacency matrix reports the
connection strength between node pairs.

There are two types of weighted correlation networks: unsigned and
signed. Unsigned networks have an absolute value of correlation |cor|
and Signed networks keep the sign of correlation +cor( 1)

2
.

We selected a signed correlation network. The nodes of such a
network correspond to zip codes, and edges between them are de-
termined by the pairwise Pearson’s correlations between zip codes. The
network was created from the adjacency matrix and performed power
transformation (normalization) of calculated Pearson’s correlations. For
normalization, we used signed network normalization
|(corMatrix+ 1)/2|β for 100×100 adjacency matrix. By raising the
absolute value of the correlation to a power β≥ 1 (soft thresholding),
the signed correlation network emphasizes high correlations at the
expense of low correlations. We tested β-values between 1 and 10, and
chose the value of β=2, as the best choice to represent the flu infection
by the correlation among zip codes in the network. We used the cor-
relation matrix after the transformation (normalization) as adjacent
matrices to plot the network. The cutoff for edges, to be plotted on the
network, was set to some reasonable number (smaller correlations were
not plotted). The cutoff correlation of 0.9 and higher was selected to be
plotted as an edge. In order to determine hubs in the network we cal-
culated degrees for all 100 nodes.

The associated network, based on correlation results between zip
codes of patients was constructed in R, with the help of WGCNA, Statnet
and gplot packages.

Our method brings together Biomedical informatics, Medicine and
Network science, in an attempt to illuminate nature of Influenza, in this
specific population. This method can be generalized and applied to
other infectious diseases and geographic regions in the U.S. and in the
world.

3. Results

Data from the HCUP–SID New York State database for the period
2003–2012 were analyzed. We studied the evolvement of flu infections
that required hospitalization throughout the year, with monthly
breakdown of cases (January through December), for 10 years with a
total number of 30,380 inpatient cases, with influenza diagnosis. The
display of monthly breakdown of the number of hospitalized cases for
the flu is shown on the bar plot (Fig. 1). The highest number of cases
was registered in December (6720). Flu virus infections were also very
active in January, February and March. Out of the peak of the flu
season, cases were sporadic, even in big cities.

The Heatmap (Fig. 2) of the state of NY, which shows the dis-
tribution of hospitalized patients with flu complications throughout
different zip codes, was constructed for the same period of 10 years.
Dots on heatmaps show numbers of patients who reside in particular zip
codes. We show only zip codes with more than 20 cases of flu (due to
privacy reasons). The total number of zip codes shown on the Heatmap
was 443, with the total number of patients of 29,071.

The highest numbers of cases are registered in the most urban zip
codes. Red color (large number of cases) on heatmaps is noticeable in
big cities: Albany, Buffalo, New York City, Rochester and Syracuse.
Also, we can observe that a lot of blue dots (that correspond to zip codes
with 20–50 cases) are highly concentrated in big urban areas. An
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important finding on the heatmaps, is that the distribution of hospita-
lized patients follows highways or other big roads, which indicates that
flu spreads along the routes that people use to move from place to place.
Rural areas had small numbers of cases. Further, we present heatmaps
of big urban areas separately (Fig. 3): (a) Albany area, (b) New York
City area, (c) North side of NY State and (d) Buffalo area. These heat-
maps can be used for future predictions and healthcare planning for
particular zip codes, as the areas with the highest risk for the flu in-
fection outbreaks and spreading. Accordingly, health care providers
should plan more resources to deal with hospitalized Influenza patients
in these particular areas.

We analyzed the distribution of population per zip codes in the state
of NY. Populations of 20 the largest zip codes are shown in Table 1.

We presented 20 zip codes with the largest absolute number of
hospitalized patients infected with flu in the period of 2003–2012 in
Table 2.

Simple inspection of these tables discovered that the highest po-
pulated zip codes didn’t have the largest number of patients with flu
complications. The most populated zip code at the 2010 census was

11368 (Queens) with 53.6% males and 46.4% females and average age
31.8 (significantly lower than the state average). About 59% were
singles. Compared to NY state averages we found that average income
was 3 times lower than the average state income. Hispanic population
percentage (74%) was significantly above the state average, median age
below the state average, foreign-born population percentage sig-
nificantly above the state average. There are no hospitals in this zip
code. Percentage of the population without a health insurance was
extremely high 31%, which is much higher than the state average
(8.7%). The second highest populated zip code was 11226 (Brooklyn)
with 44.9% males and 55.1% females. About 71% of the population
were black, and 14% Hispanic. Comparing to the state average: Black
race population percentage (71%) significantly above the state average,
followed by 14% Hispanics, median age below the state average.
Foreign-born population percentage was above the state average. There
are few hospitals in this zip code, but the percentage of population
without health insurance was 15% (higher than the state average). The
third most populated zip code was 11373 (Elmhurst) with 50.4% males
and 49.6% females. 22% of population didn’t have health insurance,
which was significantly higher than surrounding areas. Hospitals are
available in this area. Hispanic (43%) and Asian (47%) population
percentages were above the state average and foreign-born population
percentage significantly above the state average. Average income was
significantly below the state average.

Analyses of the top 20 highest populated zip codes in the NY state
lead us to discoveries, that all of these zip codes are located in the NY
City area, mostly in Brooklyn. Top 5 zip codes have significantly lower
average income than the average income in the state. They also have
significantly higher percentage of population without health insurance,
and a large percentage of foreign born, as well as Hispanic and black
population. Average number of household members was larger than the
state average. Common conclusion for this population could be that,
due to lower income and lower percentage of health insurance, a larger
fraction of residents of these zip codes haven’t visited hospitals. One of
zip codes among the top 20 highest populated zip codes was a zip code
10025 with predominantly white population and larger average income
and larger percentage of population with the health insurance. This zip
code is not on the list of top 20 zip codes with the largest number of
hospitalized patients, which could lead to the conclusion that patients
got necessary health care treatment before the flu developed compli-
cations, or they had less flu cases due to preventive measures.

The top zip code with the most patients who were hospitalized due
to Influenza, was 10457 (Bronx) with 241 patients. Census data for
2010, show that the zip code had the population of 70,496 (65%

Fig. 1. Bar plot – Number of patients infected by the influenza virus during the 2003–2012 period (monthly distribution), who were hospitalized in the state of New
York.

Fig. 2. Heat map of NY state – Distribution of hospitalized flu patients by the
zip code (2003–2012), shows that the highest concentration of hospitalized flu
patients was in five big urban areas (Albany, Buffalo, New York City, Rochester
and Syracuse). The heatmap also shows that routes of spreading follow high-
ways (in particular Highways 81, 86 and 90) as high frequency routes of tra-
velling between places.
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Hispanic, 30% black, 1.5% white and Asian…). Median age was 29.8
with 52.5% women and 47.5% men. Median income was about $24000
(3 times less than the state average income). The second zip code by the
absolute number of hospitalized patients from Influenza was 10458
(Bronx) with 221 patients. This zip code had the population of 79,492
(64% Hispanic, 20% black, 10% white, 4% Asian…). Median age was
29.3 with 52% women and 48% men. Median income was 3 times less
than the state average income. The third zip code by absolute number
of hospitalized patients from Influenza was 10467 (Bronx) with 208
patients. This zip code had the population of 97,060 (48% Hispanic,
33% black, 10% white, 6% Asian…). Median age was 33.6 with 52%
women and 48% men. Median income was about 2.5 times less than the
state average income. Further analysis revealed that, among top five zip
codes, 4 are in Bronx, with 870 patients hospitalized due to flu com-
plications. We can also notice that among top 20 zip codes, most of
patients were in Bronx.

Furthermore, we normalized the number of hospitalized patients
per population in zip codes and calculated a percentage of population
affected by severe flu complications, that required hospitalizations. We
show percentages of affected population per zip code in Table 3. This
time, the highest percentage of affected population was in the zip code
11509 (Atlantic Beach, NY). In this zip code, we found 29 hospitalized
flu patients per 2653 residents. Zip codes with small numbers of re-
sidents have a higher percentage of affected people, than more popu-
lated zip codes. It’s interesting that none of the zip codes from Bronx
were in the top 20, despite the fact that they had the highest total
numbers of patients.

To further analyze geographical distribution of hospitalized patients
with Influenza infections a power-law type network was constructed. In

order to create this network, we calculated correlations among zip
codes, considering distribution of hospitalized flu cases, over the
10 years period. A common property of power law type networks is that
the node degrees span several orders of magnitude. Outliers, or ex-
ceptionally high-degree nodes, are not only allowed but expected in
these networks [7]. The main reason to construct the power-law type
network was to identify highly connected nodes (hubs). If we can locate
hubs, that will help us to prepare an adequate public health strategy to
eliminate them and decrease the magnitude of hospitalized influenza
infections in those spatial regions, which will significantly alleviate the
cost that influenza infections impose on populations.

We performed statistical analysis to determine if the network fol-
lows power-laws. A Kolmogorov–Smirnov test was calculated at the
significance level of 0.05. Obtained results show that at this significance
level, the network is of power-laws type (p= 0.01). We created the
function that helped us to estimate the exponent, plotted the log–log
data and the fitted line (Fig. 4). The calculated value of the degree
exponent γ= 2.5935 (t-statistic value=9.804 (p-value very small),
SE= 0.2645, distance distribution=3.618).

The network is first represented as a weighted correlation adjacency
matrix. Initially, we calculated Pearson’s correlation among all 1471 zip
codes (plot of correlation is shown in Fig. 4).

Detailed network analysis was performed on 100 zip codes with the
largest number of patients (70 and more). We used the correlation
matrix, after the power transformation (normalization) as adjacent
matrices to plot the network. We selected the cutoff correlation of 0.9
and higher to be plotted as an edge. The network is shown on Fig. 5. We
picked two different colors to make nodes and labels more visible, with
no other meanings.

Fig. 3. Heatmaps of (a) Albany area, (b) NY City area, (c) North side of NY state, (d) Buffalo area. Heatmaps show that the distribution of hospitalized flu patients by
the zip code in period between 2003 and 2012, was highly concentrated in five big cities (Albany, Buffalo, New York City, Rochester and Syracuse). Heatmaps show
that the routes of distribution follow highways (highways 81, 86 and 90, in Albany area highways 87 and 9 and in Buffalo area, highway 190 toward Niagara Falls).

Table 1
Distribution of population per zip codes (20 the largest) in the state of New York from census data for 2010.

Zip 11368 11226 11373 11220 11385 10467 10025 11208 11236 11207
Population 109,931 101,572 100,820 99,598 98,592 97,060 94,600 94,469 93,877 93,386

Zip 11219 11211 11377 11214 11234 10456 11230 11355 10314 11212
Population 92,221 90,117 89,830 88,630 87,757 86,547 86,408 85,871 85,510 84,500
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Analyzing the network, we can clearly see nodes with high degrees
(hubs) as well as isolated nodes. Hubs correspond to flu cases in big
urban areas (cities) in the State of NY. Disconnected nodes correspond
to isolated cases in rural areas. By studying the network, it’s possible to
identify critical clusters, hubs, and routes, that could be subjects of
intervention, in order to minimize the spread of Influenza, decrease
numbers of complicated cases that require hospitalization and decrease
the cost.

In order to determine significance of particular zip codes and which
zip codes were hubs in the network, we calculated degrees for all 100
nodes. Zip codes (that represent nodes in the network) with the highest
node degrees are: 10465 (Bronx) with the degree of 86, then 11226
(Brooklyn) – degree of 84 and 10027 (NY City) – degree 80. Top 20 zip
codes with highest degrees are shown in Table 4.

Census data for 2010, show that the zip code 10465 had the po-
pulation of 42,230 (51% white, 37% Hispanic, 7% black, 3% Asian…).
Median age was 40.7 with 52% women and 48% men. Median income
was 1.4 times less than the state average income. The number of people
without health insurance was 7.3% which is better than the state
average (8.7%). Few hospitals are available in the area. The zip code
11226 had the population of 101,572 (71% black, 17% Hispanic, 6%
white, 3% Asian…). Median age was 34.3 with 55% women and 45%
men. Median income was about 2.3 times less than the state average
income. Uninsured population was 14.7%, which is larger than the state
average and there are few hospitals in this area. Zip code 10027 had the
population of 59,707 (40% black, 26% Hispanic, 23% white, 8%
Asian…). Median age was 30.8 with 53.5% women and 46.5% men.
Median income was about $50000 1.5 times less than the state average
income. Number of uninsured people was 10%, with few hospitals in
the area. Zip code 10457 (Morningside Heights, Uptown, Manhattan,
NY City) had population with higher number of uninsured people
13.6% and lower income than the state average. This zip code had the
largest number of hospitalized patients (241) in NY state. Zip code
10463 (Bronx) had 10th largest number of hospitalized patients (177).
Number of people without health insurance was 9.3% and average in-
come was slightly smaller than the state average. Further inspection of
the list of zip codes with highest node degrees in the constructed social
network, shows that zip codes were located in the NY City area, with
moderate to large population sizes. Most of them had larger than
average percentages of population without health insurance. Vast ma-
jority of zip codes had lower than average income. Females were ma-
jority of population in most of zip codes. And almost all zip codes had
significantly larger fraction of Hispanic and black population than the
state average.

We constructed heatmaps to visualize geographic locations of top 20
zip codes with the highest node degrees (Fig. 6). We can clearly con-
clude that all 20 zip codes with the highest node degrees (hubs) are in
the NY City area.

4. Discussion

The goal of this analysis of influenza, is to contribute to better un-
derstanding of spatial spreading of hospitalized flu cases. If we convey
this research into the lower numbers of infected people, the result will
be more saved lives, a decrease in medical costs and economic losses.
We wanted to show that the ability to more accurately analyze and
assess infection levels in geographic regions, that have higher infection
risk, in the future, can suggest targeted planning and measures to deal
with complications of Influenza. We provided a detailed analysis of
hospitalized cases, caused by flu infection in the state of NY. We con-
structed heatmaps to visualize findings of our research. Heatmaps show
that the majority of cases are located in big cities. Other interesting
finding, from heatmaps, was that the spreading of Influenza around the
state was along highways and big roads. Out of 20 zip codes with the
highest absolute number of flu infected patients, who required hospi-
talizations, most of them were in Bronx. Demographic data from 2010
census show, that the top 3 zip codes (10457, 10458, 10467) with the
highest absolute number of patients were located in Bronx. All 3 zip
codes had predominantly Hispanic population, followed by black, white
and Asian population. Further, all 3 zip codes had significantly lower
median age (29.8, 29, 3, 33.6) of population than the median age of NY
state, which is 38.4. Average income in all 3 zip codes was significantly
lower than the average income in NY state (2.5–3 times). We also found
that normalized data per number of residents in zip codes, show that zip
codes with the largest percentage of population affected by influenza
were different than the zip codes with the largest absolute numbers of
patients. The largest percentage of patients was in Atlantic Beach,
which has relatively small population. The second largest percentage of
patients per population was in Glen Clove. Both of zip codes are in
proximity of NY City, but they have small populations.

Constructed power-law network reveals hubs (high degree nodes).
Most zip codes among the top 20 by the highest node degree are located
in Bronx, NY City and Brooklyn area. This finding confirms that the
most hubs are in high populated areas in big cities. Detailed analysis of
3 zip codes with the highest node degrees, show that all 3 of them have
significantly lower average income then the state income. Zip code
10465, has predominantly white and Hispanic population, but the
average age was higher than the state average (40.7, vs 38.4). Other 2
zip codes (11226, 10027) had predominantly black population, fol-
lowed by Hispanic and white. Both areas had higher percentage of fe-
male population, than the state average percentage of females.
Although we presented demographic data for top 3 zip codes (in cases
of the highest numbers of hospitalized Influenza cases or highest node
degrees) the trend in the top 20 zip codes in both cases was similar.
Data revealed that all zip codes with higher number of hospitalized
Influenza cases, or higher node degrees in the social network, have
significantly lover average income than the rest of population in NY

Table 2
Number of hospitalized flu patients in the state of New York for the period 2003–2012 (HCUP data).

Zip 10457 10458 10467 10029 10456 10032 11550 11746 10466 10463
Population 241 221 208 207 200 190 185 184 178 177

Zip 10468 10453 14621 10452 11542 10033 11717 10031 10469 14609
Population 176 172 168 164 163 160 154 152 152 146

Table 3
Percentages of affected population for 20 zip codes with the highest percentages of hospitalized flu patients.

Zip 11509 11542 13205 14895 13452 13367 13202 13904 14605 14621
% of patients 0.011 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005

Zip 13204 13203 14514 13669 11798 13208 13905 14513 14482 14843
% of patients 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
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state. Also, most of these top zip codes show younger population pre-
dominantly black or Hispanic, as well as higher than the state average
of foreign born population. Common and important characteristic of zip
codes with high node degrees is that almost all of them have sig-
nificantly higher percentage of population without health insurance
than the state average. In case, if white population was majority, those
zip codes had higher average age, than the average age in NY state.
Findings of the social network analysis were in alignment with findings
shown on heatmaps and in 4 tables. All zip codes with the highest node
degrees were also among top zip codes with the largest number of
hospitalized influenza cases, or the largest number of people living in
those zip codes. Discoveries of our social network research suggest
some obvious measures that could lead to lower number of complicated
flu cases that needed hospitalizations. Discovery that most of zip codes
among top 20 with high node degrees had lower income and high
percentage of foreign born population suggest that these issues should
be addressed. Findings that most of the zip codes had high percentage
of uninsured population suggest that health insurance affordability is
very important factor and measures that will increase number of in-
sured people should be applied. The next issue that arises in areas with
lower incomes and larger number of uninsured people is the availability
and affordability of primary care physicians, which also needs to be
addressed. More affordable primary care medical offices, that accept
patients without insurance or with not so good insurance coverage are

needed in these zip codes. Further, a lot of areas have hospitals that are
not well ranked, which can be managed by providing more resources to
these hospitals. Additional problems are that hospitals in many cases
are concentrated in medical centers and there are not enough hospitals
in areas where people live. It’s known that a lot of people without
health insurance do not visit primary care offices and wait till they are
very sick to go directly to emergency rooms. During epidemics a lot of
medical personal are busy with other patients, so wait periods till pa-
tients are seen by doctors could be very long. During that time health
conditions can further deteriorate. These problems could be solved by
employing more doctors, or trainees like residents, or Physician assis-
tants, Nursing practitioners… Additional problems that people with
significantly lower incomes than average and without healthcare in-
surance face are lower percentages of preventive vaccinations and other
preventive measures. Often, zip codes like this don’t have enough
pharmacy stores in the area, which is the problem during epidemics,
because people have to travel longer distances to purchase necessary
medications.

Our social network study clearly identified hubs among zip codes,
that need some of suggested measures to improve prevention and
treatment that will decrease numbers of hospitalized cases.

This study of social networks provides a wealth of information for
understanding the influence of population sizes and demographics, in
particular zip codes, on the spread of influenza viruses. We used a novel

Fig. 4. (a) Plot of correlations between 1471 zip codes with respect to number of hospitalized patients with flu complications in those zip codes between 2003 and
2012, (b) Plotted the estimate of the power law exponent, the log–log data, fitted line at γ=2.5935.
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methodology to construct heatmaps and the network representation of
hospitalized flu patients in the state of NY (2003–2012), based on
correlation among zip codes. Results of this study have important im-
plications for predicting the geographical spread of hospitalized cases
of influenza and prioritizing some of suggested public health measures.
Results can help adequate planning of resources for infectious disease
outbreaks and their efficient control, as well as planning of hospital
resources for more severe cases in the future.

5. Conclusion

Our research brings together medicine, biomedical informatics,
computer science and social network science, in an attempt to explain
the distribution of hospitalized flu cases. The desire to have realistic
networks based on spatial distribution of complicated cases, for entire
populations, provides important insights how the size of the population
and demographics, influence distribution of influenza. The future re-
search framework in this field, would allow for different networks
(from different times or different locations) to be compared. It will be
important, for further development of the network science and its
ability to analyze spread of Influenza, to have effective data collecting
protocols and to use the statistical techniques to analyze collected data.

Fig. 5. The power law type network representation of hospitalized flu cases in the State of New York between 2003 and 2012, based on correlation between zip
codes. Nodes correspond to zip codes that are linked, based on strength of calculated correlations. Zip codes (nodes in the network) with the highest node degrees are:
10465 (Bronx) with the degree of 86, then 11226 (Brooklyn) with the degree of 84 and 10027 (NY City) – degree 80.

Table 4
Zip code with the highest node degrees.

Zip code Township names Node degree

1 10465 Eastchester Bay, Bronx 86
2 11226 Flatbush, Brooklyn 84
3 10027 NY City 80
4 10457 Morningside Heights, Uptown, Manhattan, NY

City
80

5 10463 Riverdale, Bronx 80
6 11580 Valley Stream, NY 80
7 10035 East Harlem, Harlem, NY City 78
8 10467 Van Cortlandt Pk, Bronx 78
9 10032 Washington Heights, Manhattan, NY City 76
10 10460 Bronx Park South, Bronx 74
11 11550 Hempstead, NY 74
12 10034 Inwood, Uptown, Manhattan, NY City 72
13 11722 Central Islip 72
14 10461 Westchester Square, Bronx 70
15 11717 Brentwood 70
16 11003 Elmont 68
17 11520 Freeport 68
18 10025 Upper West Side, West Side, NY City 66
19 10462 Van Nest, Bronx 66
20 11208 City Line, Brooklyn 66
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Our research was conducted on HCUP data, and we recommend
further study of geographic distribution of Influenza on more different
datasets and on different size of geographic areas in order to improve
understanding of distribution of hospitalized influenza patients and
spreading of Influenza.
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