Homework problems

Problem 1 Suppose the random variables $X_1, X_2,..., X_n$ have the same expectation μ . For which constants a and b is $T = a(X_1 + X_2 + ... + X_n) + b$ an unbiased estimator for μ ?

Problem 2 Given are two estimators S and T for a parameter Θ . Furthermore it is known that Var(S) = 40 and Var(T) = 4.

- a. Suppose that we know that $E[S] = \Theta + 10$ and $E[T] = \Theta + 3$. Which estimator would you prefer, and why?
- b. Suppose that we know that $E[S] = \Theta + 10$ and $E[T] = \Theta + a$ for some positive number a. For each a, which estimator would you prefer, and why?

Problem 3 Given is a random sample $X_1, X_2,..., X_n$ from a Ber(p) distribution. One considers the estimators $T_1 = \frac{1}{n}(X_1 + ... + X_n)$ and $T_2 = min\{X_1,...,X_n\}$.

- a. Are T_1 and T_2 unbiased estimators for p?
- b. Show that $MSE(T_1) = \frac{1}{n}p(1-p), MSE(T_2) = p^n 2p^{n+1} + p^2.$
- c. Which estimator is more efficient when n = 2?

Problem 4 In Homework 11 problem 1 we modeled the hits of London by flying bombs by a Poisson distribution with parameter μ .

- a. Use the data from Homework 11 problem 1 to find the maximum likelihood estimate of $\mu.$
- b. Suppose the summarized data from Homework 11 problem 1 got corrupted in the following way:

Number of hits	0 or 1	2	3	4	5	6	7
Number of squares	431	93	35	7	8	1	1

Using this new data, what is the maximum likelihood estimate of μ ?

Problem 5 Suppose that $x_1, x_2, ..., x_n$ is a dataset, which is a realization of a random sample from a normal distribution.

Let the probability density of this normal distribution be given by $f_{\mu}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2}$ for $-\infty < x < \infty$. Determine the maximum likelihood estimate for μ .

Problem 6 Let $x_1, x_2, ..., x_n$ be a dataset that is a realization of a random sample from a distribution with probability density $f_{\delta}(x)$ given by

$$f_{\delta}(x) = \begin{cases} e^{-(x-\delta)} & \text{for } x \ge \delta \\ 0 & \text{for } x < \delta \end{cases}$$

- a. Draw the likelihood $L(\delta)$.
- b. Determine the maximum likelihood estimate for δ .