Homework Assignment for Chapters 20 and 21 (Due by 3pm on Apr. 22)

Reference Exercise Problems: Text Book, 20.5 and 21.6 Exercises.

Homework problems

Problem 1 Given is a random sample $X_1, X_2, ..., X_n$ from a distribution with finite variance σ^2 . We estimate the expectation of the distribution with the sample mean \overline{X}_n . Argue that the larger our sample, the more efficient our estimator. What is the relative efficiency $Var(\overline{X}_n)/Var(\overline{X}_{10n})$ of \overline{X}_{10n} with respect to \overline{X}_n ?

Problem 2 Leaves are divided into four different types: starchy-green, sugary-white, starchy-white, and sugary-green. According to genetic theory, the types occur with probabilities $\frac{1}{4}(\theta+2)$, $\frac{1}{4}\theta$, $\frac{1}{8}(1-\theta)$, and $\frac{3}{8}(1-\theta)$, respectively, where $0 < \theta < 1$. Suppose one has n leaves. Then the number of starchy-green leaves is modeled by a random variable N_1 with a $Bin(n, p_1)$ distribution, where $p_1 = \frac{1}{4}(\theta+2)$, and the number of sugary-white leaves is modeled by a random variable N_2 with a $Bin(n, p_2)$ distribution, where $p_2 = \frac{1}{8}\theta$. Consider the following two estimators for θ :

$$T_1 = \frac{4}{n}N_1 - 2$$
 and $T_2 = \frac{8}{n}N_2$.

In previous homework you showed that both T_1 and T_2 are unbiased estimators for θ . Which estimator would you prefer? Motivate your answer.

Problem 3 A certain type of plant can be divided into four types: starchy-green, starchy-white, sugary-green, and sugary-white. The following table lists the counts of the various types among 3839 leaves.

Type	Count
Starchy-green	1997
Sugary-white	32
Starchy-white	906
Sugary-green	904

Source: R.A. Fisher. Statistical methods for research workers. Hafner, New York, 1958; Table 62 on page 299.

Setting

$$X = \begin{cases} 1 & \text{if the observed leave is of type starchy-green} \\ 2 & \text{if the observed leave is of type sugary-white} \\ 3 & \text{if the observed leave is of type starchy-white} \\ 4 & \text{if the observed leave is of type sugary-green} \end{cases}$$
(1)

the probability mass function p of X is given by

$$\frac{a \quad 1 \quad 2 \quad 3 \quad 4}{p(a) \quad \frac{1}{4}(\theta+2) \quad \frac{1}{4}\theta \quad \frac{1}{8}(1-\theta) \quad \frac{3}{8}(1-\theta)}$$

and p(a) = 0 for all other a. Here $0 < \theta < 1$ is an unknown parameter, which was estimated in previous homework. We want to find a maximum likelihood estimate of θ .

- a. Use the data to find the likelihood $L(\theta)$ and the loglikelihood $\ell(\theta)$.
- b. What is the maximum likelihood estimate of θ using the data from the preceding table?
- c. Suppose that we have the counts of n different leaves: n_1 of type starchy-green, n_2 of type sugary-white, n_3 of type starchy-white, and n_4 of type sugary-green (so $n = n_1 + n_2 + n_3 + n_4$). Determine the general formula for the maximum likelihood estimate of θ .

Problem 4 Let $x_1, x_2, ..., x_n$ be a dataset that is a realization of a random sample from a $U(\alpha, \beta)$ distribution (with α and β unknown, $\alpha < \beta$). Determine the maximum likelihood estimates for α and β .

Problem 5 Let $x_1, x_2, ..., x_n$ be a dataset, which is a realization of a random sample from a $Par(\alpha)$ distribution. What is the maximum likelihood estimate for α ?