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ABSTRACT
Prospective display advertising poses a particular challenge for
large advertising platforms. The existing machine learning algo-
rithms are easily biased towards the highly predictable retargeting
events that are often non-eligible for the prospective campaigns,
thus exhibiting a decline in advertising performance. To that end,
efforts are made to design powerful models that can learn from
signals of various strength and temporal impact collected about
each user from different data sources and provide a good quality
and early estimation of users’ conversion rates. In this study, we
propose a novel deep time-aware approach designed to model se-
quences of users’ activities and capture implicit temporal signals of
users’ conversion intents. On several real-world datasets, we show
that the proposed approach consistently outperforms other, previ-
ously proposed approaches by a significant margin while providing
interpretability of signal impact to conversion probability.

CCS CONCEPTS
• Information systems → Display advertising; Web mining;
• Computing methodologies→ Machine learning.
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1 INTRODUCTION
Online display advertising (DA) is a concept developed with the
purpose of showing the most relevant ads to users anywhere online.
It has been one of the fastest growing industries in the world, and in
the U.S. alone, this industry amassed $100 billion dollars in 20181. In
1https://www.iab.com/wp-content/uploads/2019/05/Full-Year-2018-IAB-Internet-
Advertising-Revenue-Report.pdf, accessed June 2020
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order to have their ads shown to users, advertisers rely on Demand
Side Platforms (DSPs) to reach relevant users through ad display
opportunities, bid on the ad auctions and display advertisers’ ads
on their behalf. It is the job of the DSPs to learn which users could
be interested in the advertisers’ products and would become their
business in the near future. In order to achieve that, DSPs try to
learn as much as possible about users, by collecting their online
footprints through the data collected from advertisers websites,
won auctions, third-party data providers and from its properties.

Much of the DAs’ business historically has been retargeting, a
special case where ads are displayed to remind users who have
already shown interest in advertisers business and hopefully gener-
ate conversions. As this particular form of DA by definition will not
bring new customers to the advertisers, they have shown increased
interest in prospective targeting of users. The goal of prospective
targeting is the opposite of retargeting – users who have shown
interest into advertisers business in the recent past should be ex-
cluded, and the goal becomes to generate new users as both visitors
and converters for the advertiser. While the definition of retarget-
ing users may significantly vary from one advertiser to another,
in terms of the general advertising funnel (stages in which users
are placed with respect to their probability of conversions [22]),
prospective targeting should focus on users who are in the upper
funnels (users further away from the conversion stage). Conversely,
in terms of the advertising funnel, retargeting focuses on users in
the lowest funnel stages (users very close to conversion).

Prospective modeling of users poses a particularly difficult task
for DSPs, as the direct signals of users interests (such are visits to
advertisers website or recent conversions with the same advertiser)
are no longer viable. To maintain the high performance of user
modeling, DSPs are given a challenging task to generate powerful
models which are able to detect relevant, often weaker, signals
users leave in their online trails and use them to the fullest extent.
An example of such signals could be users’ recent wedding related
invoice signaling future interest in purchasing furniture or flight
ticket to the honeymoon, whereas any signals related to furniture
or flight browsing on advertiser’s website could not be consumed.

Moreover, a very important aspect of prospecting user modeling
is explainability. Advertisers often require DSPs to provide insights
into how predictions were made, what individual signals and what
signal combinations seemed important during themodeling process.
For the case of prospectivemodeling, these signals when interpreted
can bring exceptional value to the advertiser, as they would be
able to fine tailor future campaigns for different user groups that
resonate better and potentially reach more consumers.
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Figure 1: Visualization of user activity sequence with differ-
ent groups of activities ordered by the time they occurred
and ending with the action of advertiser’s interest.

To create a generic view on signals users leave, the most natural
choice is to create a time-ordered sequence of activities user per-
formed collected by the DSP. An example of one such sequence or
trail is provided in the Figure 1 where we observe multiple interac-
tions of the user with different online properties such as mobile and
desktop search, email receipts, reading news and interacting with
ads. Modeling sequences of user events has been proposed in the
past with great success [6, 21], however, to the best of our knowl-
edge, it hasn’t been used for strictly prospective modeling of users.
Moreover, utilizing activities data to the full extent such as tempo-
ral aspect has been largely ignored when modeling conversions in
DA. Motivated by the prior arts, and designing temporal activity
transition impact to capture long- and short-term interests of users
for prospecting conversion optimization, we developed a novel
time-aware deep learning approach. We applied our approach on a
dataset designed specifically for a prospective advertising problem
and public purchase prediction dataset to showmodels applicability
beyond prospective advertising use-case.

We summarize the contributions of this work below:
• We motivate and propose the problem of DAs prospective
targeting. To the best of our knowledge we are the first to
discuss challenges and opportunities of this task.

• We propose sequence learning approach to model time-
ordered sequences of heterogeneous activities.

• Wepropose a novel time-awaremechanism to capture tempo-
ral aspect of events and thus better capturing their relevance
to the conversion. The proposed approach accumulates up
to 1.3% and 6% AUC lifts on public and proprietary datasets,
demonstrating its superiority in multiple scenarios.

• Interpretability of novel time-aware mechanism is discussed
in detail and it is used to contrast retargeting to prospective
user modeling.

Prospecting audiences is a niche product requested by several major
advertisers who typically spend more than $10 million per year on
display advertising and is it on the path of being productized and
sold. The offline results discussed here are the key milestone for this
product, especially evaluating how little performance deteriorates
compared to retargeting product which is shown in Section 5.2.5.

2 BACKGROUND AND RELATEDWORK
A brief overview of online advertising ecosystem is given to stress
the importance of predicting future conversions. Additionally, rele-
vant prior works on conversion prediction and their contributions
will be discussed with respect to this study.

2.1 Online Advertising
Major DSP platforms for display advertising (e.g., Google Dou-
bleClick, Verizon Media DSP) allow advertisers to sign up and run

campaigns and lines. The task for DSP platforms becomes to run
advertiser’s lines and serve users such that predefined key per-
formance indicators (KPIs) goals are reached. This is achieved by
participating in online auctions for different ad opportunities while
optimizing DSP’s goals.

The (simplified) optimization objective for each DSP line can
often be formalized across all ad opportunities i in a window of
time (i.e. a day) typically as:

argmax
bidi

N∑
i=1
I(bidi ) ∗vi

subject to:
N∑
i=1
I(bidi ) ∗ ci ≤ B,

(1)

where number of won impressions is defined as

I(bidi ) =

{
1 if bid won
0 else

}
, (2)

and impression value is defined asvi = pCVRi ∗impression_valuei ,
with pCVRi being predicted conversion rate (in case the line is
optimizing conversion, but it can be replaced with click-throught
rate (pCTR) or any other activity estimate) and impression_valuei
is the advertisers value of an impression. Optimization function is
constrained such that total cost does not exceed the budget B.

For conversion predictions the bid is often controlled by the
probability of user converting after ad is displayed, more precisely,
the maximum bid is defined as a factored conversion probability
bidi = f (α∗vi ) [11]. Function f represents optimal bidding strategy
(often a linear function2) and α is often called a control parameter
which includes several signals such as pacing [9].

As it can be observed, deciding on the maximum bid has three
main optimization aspects of participating in online auctions. And
the main focus of this study, the estimate of conversion probabil-
ity pCVR is one of the key components in the DSP business that
drives performance and directs the system towards displaying ads
to relevant users.

2.2 Modeling users’ conversion prediction
In large scale advertising setups, conversion probability estimation
has been successfully tackled through logistic regression [14] or
random forests models. However, such systems depend on time
intensive efforts of manually designing and selecting features, while
the utility of handcrafted features is largely dependent on the do-
main knowledge of experts curating the features. Moreover, since
typical applications are nonlinear, considering feature interactions
quickly becomes prohibitively expensive due to a combinatorial
explosion [13].

Recently, models with representation learning capabilities have
also been proposed for CTR and CVR prediction tasks, e.g., factor-
ization machines [15] for CVR or deep residual networks [18] and
Siamese networks [8] for CTR that tackle problems of learning non-
linear interactions of features. Also, more prominently, models that
capture information from the sequence such are RNNs have been
proposed recently [1, 5, 6, 21] and they reportedly perform signifi-
cantly better than their non-sequential counterparts. Moreover [1]

2https://observablehq.com/d/9d739b2bc5b22bd8, accessed June 2020
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and [22] have used sequences of events from diverse data sources,
while [1] has additionally proposed adding temporal information
of events as an additional source of information to better model
representations for conversion attribution task.

3 METHODOLOGY
3.1 Proposed Approach
We propose a novel model - Deep Time Aware conversIoN (DTAIN)
model (Fig. 2) for modeling both long and short-term impacts of
user’s events. The DTAINmodel takes sequence of event id’s {ei |i =
1 . . .N , ∀e ∈ V } and time difference of events’ timestamp and
the time point of prediction (usually time of an ad opportunity
or timestamp of the last event in a sequence) as inputs. It then
forwards this information through 5 blocks specifically designed to
learn conversion rate prediction.

Figure 2: Graphical representation of the DTAIN model

3.1.1 Blocks of the DTAIN model.

Events and Temporal information embedding. Embeddings of
events and temporal information are performed in two separate
parts of the network. First, ln events in the user’s trail are embed-
ded into vectors hei of hei ∈ Rdw=200 dimensional common space
(Embedding block).

Temporal attention learning. Each event ei is also associated
with two additional single-dimensional learnable parameters: µei ∈
Rdt=1 and θei ∈ Rdt=1. These parameters are designed to model
the temporal increment ∆t as time difference between current state
i and the state of interest j (i.e. timestep when pCVR is served):

∆t = τej − τei (3)

δ (ei ,∆t ) = σ (θei − µei∆t ) (4)

σ (x) =
1

1 + e−x
(5)

δ (ei ,∆t ) captures the influence of the current event to conversion
with θei measuring initial influence and µei measuring the change
of the influence of the event with the time difference. Smaller |µei |
refers to events whose influence does not change as we observe
the event through different points in the users trails, while larger
|µei | means that position and time of the event is very important
for measuring its effect on conversion probability. Given that the
∆t is always positive and provided that θei doesn’t change, larger
positive values of µei would mean that the temporal score is closer
to 0, and larger negative values that is closer to 1. Similar ways
of modeling temporal increments can be seen in known results of
Euler’s forward method [4] for modeling change of state in dynamic
linear systems. In our case, we opted for using time information as
an event-level contribution to the final task, thus Sigmoid function
was used to transform θei − µei∆t into (0, 1) range. This approach
allows us tomodel same events that happenedmultiple times within
the same user trail differently, i.e. giving more attention to events
that happened more recently.

Other formulations of modeling time information given in the
literature are mostly in the context of time decay which biases
models to focus less on long term effect of the individual events.
Several approaches [3, 16] propose a number of ways for generating
time features such are linear, tanh, exponential or using temporal
deltas, which are to be added to the existing feature set. However,
all proposed strategies are cases of strict time decay effect where
only events which happened close to prediction time may have
higher values. Moreover, [23] proposed adding temporal gates to
LSTM cells to model the time passed between subsequent events
in a event-oblivious manner. Another direction involves embed-
ding coarse grained categorical values of time, such as embedding
event hour category [10, 12]. Attention regularization mechanism
was an approach proposed to prevent embedding being similar for
events that occur at a larger temporal distance [1]. Finally, [17] pro-
posed using time features, similarly to [3, 16] for events attention
generation.

The majority of existing approaches model time decay factors
or high level temporal categorizations, with a few approaches mod-
eling event-oblivious transition probabilities, not capturing the
invariances of different events. Oppositely, our approach learns
event-specific initial and time influence factors [2] which are then
used as a gate to control how much information passes from each
event embedding into the model’s architecture through the Sigmoid
activation, rather than creating a distribution of temporal signal
across all events in the trail as Softmax activation would do [17].
Furthermore, impact of each event in the sequence is modeled re-
gardless of how far away from prediction the event occurred which
is achieved through the temporal event state change representation



modeling. Such an approach resonates with prospective advertising
use case the best, as preventing algorithm by design to look into
early events may loose opportunities.

The learned embeddings and contributions of each event are
then summarized to obtain new event representation vei :

∀hei ∈{i=1...ln }∀δ (ei ,∆t )∈{i=1...ln }vei = hei ∗ δ (ei ,∆t ) (6)

resulting again in vei ∈ Rdw=100 dimensional space. This way of
modeling preserves model interpretability, given that for each event
we can measure its initial and time influence factors and interpret
their values as described above.

Computational aspect. The proposed temporal attention block is
also memory efficient. Even though it requires learning additional
two parameters per unique event, with the current hyperparameter
setup, temporal attention only adds additional 1% of parameters to
the model that need to be learned.

Recurrent Net block. The resulting embeddings of events are then
fed into bi-directional RNN model (with GRU cells used for both
forward and backward pass networks):

дe1 ,дe2 , . . . ,дeN = biRNN (ve1 ,ve2 , . . . ,veN ,θGRU ) (7)

Bi-directional RNN ensures that the model learns complex rela-
tions between events, which is particularly important for user trails
where events may be grouped by sessions which carry higher order
information than the events themselves [8]. The resulting embed-
dings дei are in Rdm=100 dimensional space.

Attention learning block. In order to learn rich representations of
user’s trail, it is imperative to focus on events that carry the most
information. To learn representations that focus on important parts
of the user trail we employ a dedicated attention mechanism on top
of sequence modeling features [8]. Employed attention block yields
event scores, that highlight events of greater importance for the
task at hand. In our particular case, attention model is implemented
as a two-layered individual neural network sq (дe ;θe ) with hidden
dimensions of Rda1=100 and Rda2=1, and Softmax at its final layer:

tei =
exp(se (дei ;θe ))∑ln
i=1 exp(se (дei ;θe ))

. (8)

Neural network se (дei ;θe ) learns real valued scores for each ith

event in a given user trail. Attention learning in the DTAIN model
is coupled with the entire network (end-to-end).

Event attentions tei are then used to re-weight their input repre-
sentations дei and to obtain compact representation of the entire
sequence s =

∑
i tei ∗ дei . There are other ways of obtaining com-

pact representations s , such as sum, average or max of individual
event vectors. However, our experiments, as well as available liter-
ature [7, 20], demonstrate that such strategies are inferior to using
attention machanisms.

Learning to predict from the resulting representation. The summa-
rized user trail representation from previous block is finally fed to
a sequence of two fully connected layers with an inner dimension
Rdc=100 and ReLU nonlinearities before finally passing through a
sigmoid layer σ (·) to obtain the probability of conversion (pCVR).

Finally, to optimize the parameters of the DTAIN model, we have
obtained logistic loss L for the CTR prediction based on logits from
the topmost layer:

L = −
1
N

N∑
n=1

(yn log(ŷn ) + (1 − yn ) log(1 − ŷn )), (9)

where ŷn are obtained logits after final sigmoid layer and yn is
conversion label for the nth user trail.

4 DATA DESCRIPTION
4.0.1 Public RecSys 2015 challenge dataset. We conducted purchase
prediction experiments on publicly available dataset obtained from
RecSys Challenge in 2015. This dataset contains a collection of se-
quences of click events with respective timesteps from Yoochoose
website. Some of the click sessions ended with a purchase event
(if so, label was set as positive, otherwise negative). There are
1, 965, 359 sessions in the training and 279, 999 in test dataset, down-
sampled to obtain ∼ 11% of positives. These sessions are much
shorter than the proprietary user trails, and they reflect repro-
duceability of retargeting results, as there is no publicly available
prospecting dataset to the best of our knowledge.

4.0.2 User activity trails from Verizon Media (VM). We have also
conducted experiments using user activity trails data from Verizon
Media3. This includes activities chronologically collected from a
user, derived from various sources, e.g., Yahoo Search, commer-
cial email receipts, reading news and other content on publisher’s
webpages associated with Verizon Media such as Yahoo and AOL
homepages, advertising data (e.g., ad impressions, clicks, conver-
sions, and site visits). The representation of an activity comprises
of activity ID, time stamp, its type (e.g., search, invoice, reserva-
tion, content view, order confirmation, parcel delivery), and a raw
description of the activity (e.g., the exact search query for search
activities) after stripping personally identifiable information. It is ex-
pected for all DSPs to have similar spectrum of data sources thanks
to the existence of large number of third party data providers.

To ensure legality of information used, datasets created for each
advertiser strictly follow legal guidelines determined by the con-
tract, i.e. data collected from advertiser A will never be used for
any optimization task for advertiser B.

Datasets used in this study are collected from twomajor anonymized
advertisers from the highly prevalent retail and communications
categories that we will denote as Advertiser 1 and Advertiser 2, re-
spectfully. Advertiser 1 has defined three different conversion rules
for it’s three retail portfolios, while Advertiser 2 defined a single
conversion rule. Training sets for the two advertisers are comprised
of 788, 551 users in train and 196, 830 for test set for Advertiser 1,
and of 917, 451 users in train and 229, 126 for test set for Advertiser
2, collected over an undisclosed period longer than 100 days. As for
unique activities dictionary, for Advertisers 1 and 2 we collected
243, 190 and 243, 713 most frequent events respectively. Filtering of
events is done before downsampling negative users so as to select
events that occurred in more than 1000 unique user trails. User
activity trail consists of the last 500 events after deduplication as
per dataset statistics, 80% of all users had sequence length <500.
3https://webscope.sandbox.yahoo.com/
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Problem setup and dataset construction. Retargeting event is de-
fined by the advertiser, i.e. user browsing furniture items on ad-
vertiser’s website may be regarded as a retargeting user for furni-
ture conversions for that advertiser in the next several months. As
mentioned in the Introduction, advertisers who focus on prospec-
tive advertising are only interested in new converters from non-
retargeting set of users, however, learning to target prospecting
users by optimizing conversions is very difficult. Namely, a com-
mon theme for a majority of retail and communication categories
advertisers is that most users will visit their webpage at least once
before converting. Thus directly optimizing for conversion will
likely result in a retargeting-biased conversion prediction as we
demonstrate in Section 5.2.5. Conversion statistics with respect to

Conversion Site visit
within 24h

Site visit
before 24h Percentage

Advertiser 1

1 1 0 38.09%
1 1 1 62.91%

Advertiser 2

1 1 0 58.15%
1 1 1 41.85%

Table 1: Percentages of conversions with respect whether
the user’s first site visit (retargeting event) occurred within
24h of conversion or before.

advertiser site visits are provided in Table 1. 62.91% and 41.85% of
the cases have users visiting Advertiser 1 and Advertiser 2 websites,
respectively, a day or more before the conversion. As suspected
the early visits happening a day or more before the conversion
are more prominent for the retail advertiser. The objective of DSP
prospective targeting is to show impressions to users before they
become retargeting users, thus bringing new users to the advertiser
and boosting their sales.

Algorithms trained on the original data collected could be bi-
ased towards modeling retargeting signals only, i.e. rule-based sys-
tem that observes data from a day before can easily achieve recall
of 62.91% for Advertiser 1, while a near-real-time system would
achieve recall of 100% (but a low precision as only 5% users who
visited convert). To prevent this from happening, we propose a
careful dataset construction that only keeps users’ actions before
they became retargeting users as highlighted by the advertiser. The
process is shown in Fig. 3. In Fig. 3 a) and b), we can see two dif-
ferent strategies of constructing the dataset. First one includes all
events up to the conversion including strong retargeting signals,
while the second one stimulates prospecting signals by removing all
events past the first retargeting event. One day trail cutting is used
for building training dataset. During inference users are labeled as
retargeting/prospecting and thus no events are removed.

Finally, for successful prospective advertising it is also impor-
tant to predict the retargeting event occurrence. Figure 3 c) shows
dataset for the new optimization task that allows DSPs to show the
ad to the user before they become labeled as retargeting.

Figure 3: Visualisation of trail cutting process event before
retargeting event happens.

5 EXPERIMENTS
Baseline algorithms, evaluation metrics and training and serving
infrastructure are first described, followed by discussion of the
results on both public and proprietary datasets.

5.1 Baselines
The following models are selected to either represent previously
published studies or as models that are expected to fit well with
the given setup.

(1) Random Forests (RF): Random Forests algorithm ran on top
of chi squared feature selection using features extracted from
user sequential trails data that mimics the exact setup used
in the current production.

(2) Recurrent Neural Network (RNN): An RNN with embedding
layer and GRU cells to ensure fast convergence with two
fully connected layers for classification.

(3) 1-dimensional Convolutional Neural Networks (CNN): A 1-
dimensional CNN on top of learned event embeddings with
two fully connected layers for classification.

(4) RNN with attention layer (RNN+Attn): An extension of the
RNN model with additional attention layer used to summa-
rize the sequence [7].

(5) RNN with self attention layer (RNN+SelfAttn): Alternative
extension of the RNN model with self-attention layer used
learn higher order interactions between events before the
RNN block [19].

Models configuration and training. DTAIN model is based on the
RNN+Attn baseline, thus hyperparameters used in DTAIN (given in
Section 3.1.1) are kept the same for all RNN-based approaches. CNN
architecture uses four 1-D convolutional blocks with 64 filters of
width 3 and batch normalization between layers, resulting output
is flattened and forwarded to the same classification block as used
by the other algorithms. For all algorithms weights are initialized
by a truncated normal initializer. To optimize L, we use stochastic
gradient descent with Adam optimizer, and the best learning rate
found through grid search was 0.001.

The proposed prospecting solution is designed to run on col-
lected user activities in an ad hock or near-real-time offline manner,
as user fires an event. The training is conducted on offline data and



inference is run on same data with new events appended, using
distributed infrastructure. Obtained scores are both tiered for tar-
geting and passed to the bidder for optimization purposes. All deep
learning models were, thus, trained on distributed TensorflowOn-
Spark4 infrastructure with 20 GPU (Nvidia K80) machines. This
system complies with production guidelines where users need to
be scored in near-real-time fashion.

5.1.1 Evaluation metrics. For assessing the quality of estimated
CVR probabilities, we use the area under the ROC curve (AUC) clas-
sification performance measure, in addition to Accuracy, Precision
and Recall obtained after choosing the classification threshold.

5.2 Experimental results
The DTAIN and baseline models are evaluated on two described
datasets and the results are given below.

5.2.1 Results on public dataset. Results of the experiments on pub-
lic data source purchase prediction task are given in Table 2. The

ROC AUC Accuracy Precision Recall

RF 0.6168 0.7608 0.2025 0.4093
CNN 0.7534 0.6779 0.2087 0.7041
GRU 0.7504 0.6958 0.2142 0.6746
GRU+SelfAttn 0.7029 0.6734 0.1907 0.6184
GRU+Attn 0.7639 0.6997 0.2195 0.6904
DTAIN 0.7666 0.6943 0.2186 0.7047

Table 2: Performance metrics on the purchase prediction
Youchoose dataset for all algorithms.

ROC AUC and other metrics results show that the proposed DTAIN
model overall outperforms all of the baselines, whereas all of the
sequence learning baselines outperformed random forests by a
significant margin. Competitive results of DTAIN models show
that use of temporal information can truly help the predictive task
even in short-sequence datasets such as this one, as all examples
in the public dataset occur within one hour time window. It may
be surprising that modeling temporal dynamics as proposed helps,
however, as discussed in the Section 3.1, the temporal information
has two aspects to it and thus can model initial impact of the events
(in addition to temporally changing impact) to the purchase thus
providing additional information to the classifier.

5.2.2 Results on VM dataset - prospecting users pCVR prediction.

Results on binary classification. In this section we conduct ex-
periments on a binary classification task predicting whether a user
converted for any of the conversion rules set by the Advertisers
1 and 2. Overall, more prominent results are obtained compared
to the public dataset on the proprietary dataset where temporal
aspect plays a larger role in prediction (Table 3).

First of all, there are differences in task difficulty between the
two advertisers, as predicting conversion for retail advertisers tends
to be an easier task than predicting conversion for communication
advertisers. Furthermore, all sequence modeling baselines outper-
formed RF algorithm, while DTAIN outperforms all baselines by
a large margin on a majority of metrics and on both datasets. The
4https://github.com/yahoo/TensorflowOnSpark, accessed August 2020

ROC AUC Accuracy Precision Recall

Advertiser 1

RF 0.9323 0.8494 0.5223 0.8643
CNN 0.9408 0.8757 0.5773 0.8808
RNN 0.9436 0.8855 0.6010 0.8804
RNN+Attn 0.9424 0.8937 0.6231 0.8764
RNN+SelfAttn 0.9440 0.8846 0.6002 0.8691
DTAIN 0.9519 0.9031 0.6478 0.8854

Advertiser 2

RF 0.8845 0.8330 0.1963 0.7469
CNN 0.9034 0.8225 0.1771 0.8378
RNN 0.8929 0.8474 0.1942 0.7902
RNN+Attn 0.8865 0.8525 0.1974 0.7735
RNN+SelfAttn 0.8943 0.8461 0.1921 0.7851
DTAIN 0.9031 0.8857 0.2434 0.7651

Table 3: Performance metrics on the proprietary user trails
dataset for all algorithms and both advertisers.

large time window allows the time mechanism parameters to prop-
erly capture both initial and temporal distance impacts of each
event. Moreover, as the time window is significantly larger, the
events may repeat multiple times, and time mechanism will be
able to select the most important events out of the redundant ones
through the event’s temporal distance impact and thus filter out
the noise in the data. Both properties are considered crucial for
prospective conversion modeling.

Results on multi–task classification. Next, results for the multi–
task classification setup (Table 4) are discussed, where prediction
is made whether a user will convert for any of the three different
conversion rules defined by advertiser 1. DTAIN shows the best
performance on majority of metrics across the four tasks, always
having the top performance at ROC AUC metric. This evaluation
shows that the DTAIN model is overall the best among the chosen
baselines once again. The DTAIN model was prominently the best
approach for Task 1 (prediction if the user is not going to convert)
which is very important for the bidding system to know if it should
bid for a user or not and the Task 3.

5.2.3 Results on VM dataset - users’ retargeting event prediction.
Next, in terms of prospective DA, we evaluate the performance of
all algorithms on task of predicting whether the first retargeting
(thus not conversion) event will occur within 24 hours.

In order for the DSP to be attributed with a conversion, the DSP
must show its ability to display ads to prospective users before
they become retargeting users (before firing their first retargeting
signal). In order to achieve this, DSPs need to estimate how likely
is that the user will visit advertisers website in the near future and
make sure to show advertiser’s ad to the user before that event.

DTAIN model and all baselines are run on the retargeting event
prediction dataset and results are shown in Table 5.

Compared to conversion prediction task we can see that the re-
targeting event prediction task is slightly easier for both advertisers
and all baselines, andwe suspect that this is due to the fact that there
are simply more positive events in the dataset. There are ∼ 3.9M
positive retargeting events vs ∼ 230K conversions for advertiser

https://github.com/yahoo/TensorflowOnSpark


Advertiser 1 ROC AUC Accuracy Precision Recall

Task 1

RF 0.9211 0.8197 0.9689 0.8107
CNN 0.9382 0.8821 0.9735 0.8832
RNN 0.9517 0.8888 0.9777 0.8874
RNN+Attn 0.9472 0.8917 0.9753 0.8933
RNN+SelfAttn 0.9482 0.8806 0.9767 0.8783
DTAIN 0.9523 0.9001 0.9774 0.9015

Task 2

RF 0.8992 0.7603 0.0701 0.9185
CNN 0.8713 0.7407 0.0633 0.8889
RNN 0.8888 0.7757 0.0718 0.8785
RNN+Attn 0.8961 0.7734 0.0728 0.9032
RNN+SelfAttn 0.8868 0.7695 0.0698 0.8758
DTAIN 0.8993 0.7697 0.0721 0.9083

Task 3

RF 0.8893 0.7426 0.1874 0.9039
CNN 0.8867 0.7880 0.2154 0.8733
RNN 0.9032 0.7992 0.2271 0.8882
RNN+Attn 0.9071 0.8137 0.2385 0.8693
RNN+SelfAttn 0.9022 0.8001 0.2263 0.8757
DTAIN 0.9113 0.8032 0.2318 0.8946

Task 4

RF 0.8899 0.7525 0.2282 0.8952
CNN 0.8879 0.8034 0.2674 0.8554
RNN 0.9038 0.8096 0.2778 0.8815
RNN+Attn 0.9031 0.8132 0.2803 0.8704
RNN+SelfAttn 0.9033 0.8203 0.2873 0.8608
DTAIN 0.9084 0.8146 0.2833 0.8805

Table 4: Performance metrics on the proprietary user trails
dataset prediction of different conversion tasks for adver-
tiser 1.

1 and ∼ 5M positive retargeting events vs ∼ 52K conversions for
advertiser 2 on the drawn user sample.

Like in the previous setups, we observe that sequence models
both with and without attention mechanisms outperform RF, and
also we see that DTAIN outperforms all baselines by an even larger
margin than on the conversion prediction dataset thus strengthen-
ing its position as a powerful algorithm for prospective advertising.

5.2.4 Attention analysis and interpretation. To tap into the explain-
ability of the models we randomly selected a hundred converters
and analyzed attentions of their events for the communications ad-
vertiser.We compare DTAINmodel primarily against the GRU+Attn
model, which has shown properties of explainability in the past [7].
From Fig. 4a it can be seen that GRU+Attn model assigns attentions
across the users trails, highlighting not only events that happened
close to conversion which is a desirable property for prospective
advertising. The DTAIN model has a slightly different mechanism
of attention as time plays a significant role in allowing informa-
tion from different signals to be passed through the network. As
discussed in Section 3, key parameters θei and µei have interesting
interpetability properties. To show this, we plot scores of both the

ROC AUC Accuracy Precision Recall

Advertiser 1

RF 0.9210 0.8778 0.9481 0.8929
CNN 0.9393 0.8961 0.9582 0.9070
RNN 0.9477 0.8973 0.9633 0.9033
RNN+Attn 0.9452 0.9006 0.9614 0.9097
RNN+SelfAttn 0.9503 0.8935 0.9640 0.8976
DTAIN 0.9745 0.9294 0.9772 0.9316

Advertiser 2

RF 0.9112 0.8963 0.9540 0.9188
CNN 0.9551 0.9107 0.9716 0.9189
RNN 0.9438 0.9030 0.9676 0.9132
RNN+Attn 0.9466 0.9078 0.9688 0.9181
RNN+SelfAttn 0.9402 0.8979 0.9660 0.9084
DTAIN 0.9746 0.9274 0.9821 0.9290

Table 5: Performance metrics on the proprietary user trails
dataset for all algorithms predicting if the retargeting event
will occur in the next day.

(a) GRU+Attn attention (b) DTAIN attention

(c) DTAIN θei (d) DTAIN µei

Figure 4: Heat maps of events attentions scores for 100 ran-
domly sampled converters for Advertiser 2.

key parameters in Fig. 4c, 4d, and the attentions from the attention
block in Fig. 4b. Interestingly, we can see that there are plenty of
high positive values of θei and high negative values of µei further
away from the end of sequences, in addition to the expected ones
closer to the end of it. This means that DTAIN is capturing both
long term as well as short term patterns and controls which event
signals fully pass through the rest of the network.

These interesting findings allow us to use the attention scores
for explainabilty to the advertisers by providing insights into both
long- and short-term patterns and important events that they can
further use to improve their creatives and advertising strategies.

5.2.5 Retargeting vs Prospecting pCVR estimation discussion. We
finally compare the pCVR estimation tasks for retargeting and



prospecting options. As we discussed before, the two tasks are
targeting-wise mutually exclusive, the two prediction tasks, how-
ever, could be directly compared thanks to the trail cutting strategy.
We have, thus, run standard retargeting experiment including retar-
geting events a day before conversion and compared AUC’s of the
retargeting and prospecting tasks for all algorithms. Figure 5 shows
percentage of changes going from retargeting task to prospecting.
As we can observe, in a majority of algorithms for both advertisers
we see an AUC drop of few percentages implicating the increased
difficulty of the latter task. More importantly, with the loss of re-
targeting features the AUC has not dropped significantly which
is the key milestone result for productizing prospecting audiences
product. The AUCs don’t uncover the real differences, thus, we

Figure 5: Percentage of AUC drop for estimating pCVR from
retargeting to prospecting tasks for two advertisers.

looked into the top events as scored by the temporal attention. We
found that for the prospecting case, algorithms focused on a wider
specter of events including commercial email receipts, content read,
searched queries, etc., while for the retargeting case, algorithms
focused almost exclusively on browsing through the advertisers
website for a majority of users, seldom selecting other events such
are email receipts or content reads. We can conclude that the domi-
nant retargeting signals have biased algorithms away from useful
signals that were exploited in the prospecting dataset and that
did not necessarily occurred close to conversion point. Our final
analysis shows the there really exist a difference between two, seem-
ingly similar tasks, reinforcing our dedication to the prospective
modeling.

6 CONCLUSIONS AND FUTUREWORK
In this study we proposed a sequence based approach for modeling
conversion prediction based on users’ activity trails that leverages
both the sequence and temporal information of events collected
frommany data sources.We proposed a newway tomodel temporal
information for prospective conversion prediction that preserves
ability of interpretation, and finally we showed that the DTAIN
model outperforms baselines that represent state-of-the art on both
public and proprietary datasets. However, as the data is collected
from many data sources, and different events may repeat often or

periodically there is still noise in data heterogeneity that the algo-
rithms need to address properly, thus developing novel techniques
to address these concerns will be the next steps.
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