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Appendix A: Modelling noisy inputs derivations

In order to model the distribution of input variables, a reasonable assumption is that input variables

x are generated by some process u, and that process has a Gaussian error. Thus, the distribution

of input variables can be presented as ppxq � N pu,Σxq. The new data point for prediction will be

annotated as x�. In the general case, we predict on the entire set of points representing a single

snapshot of a network, so we annotate these testing points with X�.

The distribution of the target variable can then be expressed by the marginalization of input variables

distribution:

ppy�|Dq �
»
ppy�|X�,DqppX�qdX� . (1)

As the distribution of ppy�|X�,Dq is Gaussian in the GCRF model, and the distribution of X� is

conjugate to the target variable distribution, marginal distribution ppy�|Dq is a Gaussian as well.

Since this integral is intractable for estimation in most of the cases, potential ways of solving it

include sampling methods, variational Bayes or direct approximation of the moments of distribution

as shown in [1]. For large or complex non–linear parametrized models, sampling–based uncertainty

propagation is often computationally infeasible, thus this work is focused on approximating moments

of the resulting distribution in Eq. 1, similarly to [2], however applied to evolving networks.

It is useful to first formalize conditional Gaussian prediction form of the GCRF at point X�. The

Gaussian of the GCRF has the form:

P py�|X�q � N

��
µ

µ�

�
,

�
Σ Σ�

ΣT
� Σ��

��
, (2)

with predictive mean µ� and variance Σ��.

In order to approximate the resulting distribution in Eq. 1, we approximate its first two moments.

They can be expressed using the law of iterated expectation and conditional variance and solved

using Laplace’s method. Such methods of uncertainty propagation that are done by truncating multi–

dimensional Taylor expansions of quantities of interest in order to approximate uncertainty criteria

are called perturbation methods in the literature. Accuracy of such an approach is governed by the

order of Taylor expansion [3].
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Approximating first moment - the mean

The first moment of the distribution specified in Eq. 1 can be estimated by the Law of iterated

expectations:

mpX�q � EX�rEry�|X�ss � EX�rµ�s. (3)

The predictive mean mpX�q can be estimated by approximating µ� by its first order Taylor expansion

around µX� (by µX� , we annotate the mode of the distribution of input variables of all nodes in the

graph X�)

mpX�q � µ�

���
X�µX�

� JTµ�pX� � µX�q �Op}X� � µX�}
2q, (4)

where Jacobian

Jµ� � Od
Bµ�

BX
pdq
�

���
X�µX�

. (5)

The expected value of this Taylor expansion yields

EX�rµ�s � EX�

�
µ�

���
X�µX�

� JTµ�pX� � µX�q

�
� µ� (6)

We can see that, within the first order Taylor expansion, the prediction mean at any y� does not

provide any correction over the zero’th order.

Approximating second moment - the variance

The second moment is estimated by the Law of conditional variance:

vpX�q � EX�rvary�py�|X�qs � varX�pEy�ry�|X�sq � EX�rΣ��s � varX�pµ�q

In order to obtain predictive variance, vpX�q, on the other hand, we need to approximate EX�rΣ��s

and varX�pµ�q. The natural choice for approximating EX�rΣ��s is second order Taylor expansion:

Σ�� � Σ��

���
X�µX�

� JTΣ��
pX� � µX�q �

1

2
pX� � µX�q

THΣ��pX� � µX�q � Op}X� � µX�}
3q, (7)

where Jacobian and Hessian are:

JΣ�� � Od
BΣ��

BX
pdq
�

���
X�µX�

, (8)

HΣ�� � Od,e
B2Σ��

BX
pdq
� BX

peqT
�

���
X�µX�

. (9)

The part of the Eq. 7, 1
2pX��µX�q

THΣ��pX��µX�qq is solved using the expression of quadratic form

under Gaussian:»
py � µqTΣ�1py � µqN pµX ,ΣXqdx � py � µqTΣ�1py � µq � TrrΣ�1ΣXs. (10)

The expected value of then becomes:

EX�rΣ��s � Σ��

���
X�µX�

�
1

2
Tr rHΣ��tΣX�us , (11)
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where we find a new term ΣX� introduced as variance from distribution of X�. The notation tΣX�u

serves to signify that rather than maintaining a single covariance matrix for all nodes in the graph,

we can opt for maintaining a covariance matrix for each node in the graph. This is a point where

information from distribution of input variables X provides a correction over predictive uncertainty

of the GCRF.

Now, we can calculate varX�pµ�q using previously obtained mpX�q

varX�pµ�q � varX�

�
µ�

���
X�µX�

� JTµ�pX� � µX�q



� JTµ�tΣX�uJµ� (12)

After combining the previous two results for EX�rΣ��s and varX�pµ�q, we obtain the expression for

predictive variance:

vpX�q � Σ��

���
X�µX�

�
1

2
Tr rHΣ��tΣX�us � JTµ�tΣX�uJµ� . (13)

We see from Eq. (13) that there is a correction of the predictive variance influenced by the distribution

of input variables via tΣX�u. By solving partial derivatives, we can obtain corrected predictive variance

that includes uncertainty coming from input variables. Finally solutions of the three partial derivatives

are needed to complete the correction term expression: Jµ� , JΣ�� and HΣ�� . As we cannot analytically

determine Σ�� we use the derivative of an inverse rule to solve JΣ�� :

JΣ�� � �OdΣ��
BΣ�1

��

Bx
pdq
�

Σ��, (14)

and for the Hessian HΣ�� :

HΣ�� � Od,eΣ��

�
2
BΣ�1

��

BX
pdq
�

Σ��
BΣ�1

��

BX
peq
�

�
B2Σ�1

��

BX
pdq
� X

peqT
�

�
Σ��. (15)

Jµ� � Od � Σ��
BΣ�1

��

Bx
pdq
�

2αθTX� � Σ��2αθpdqT , (16)

where Jacobian in Eq. 16 is solved for case when only one linear predictor is used. First and second

derivatives of Σ�� can be calculated from the Precision matrix of the GCRF model.

BΣ��

BXd
�

�

$&
%

2
°
g βlSpxi, xg, ψlq

BSpxi,xg ,ψlq

Bx
pdq
i

, i � j

�2
°
g βlSpxi, xg, ψlq

BSpxi,xg ,ψlq

Bx
pdq
i

, i � j
(17)

BΣ�1
��

Bxd�x
e
�

�

$&
%

2
°
g βlpSpxi, xg, ψlq

BSpxi,xg ,ψlq

Bx
pdq
i

BSpxi,xg ,ψlq

Bx
peq
i

� Spxi, xg, ψlq
BSpxi,xg ,ψlq

B2x
pdq
i x

peq
i

q, i � j

�2
°
g βlSpxi, xg, ψlq

BSpxi,xg ,ψlq

Bx
pdq
i

BSpxi,xg ,ψlq

Bx
peq
i

� Spxi, xg, ψlq
BSpxi,xg ,ψlq

B2x
pdq
i x

peq
i

q, i � j
(18)

Using derivations obtained in the Eq. (14), (15), (16), which are specific to the GCRF model, in the

equation of approximated variance (13), we obtain corrected variance for the GCRF model. Now

the model’s predictive variance is dependent on variance of input data, assuming input data has a

Gaussian error. This allows the GCRF model to be sensitive to significant changes on input data

distribution, which results in higher predictive variance when predicting in the unknown.

To ensure propagation of uncertainty we should then apply the iterative approach to multiple-steps-

ahead prediction, since we now include uncertainty that is accumulating from the input variables

[2, 4].

3



Uncertainty propagation

In order to properly model previous outputs as inputs as we predict ahead in time, lagged outputs are

observed as random variables. The input vectors, will also be random variables, as they incorporate

predictions recursively, XT � N pµXT�k
,ΣXT�k

q. Note that for each node in a network we will maintain

a N pµXT�k
,ΣXT�k

q distribution. After each successive prediction, as new predicted values become

inputs for the next prediction, ΣX� needs to be updated accordingly. In order to update ΣXT�k
for

the new input ŷT�k, all we need to do is to calculate

covpŷT�k, XT�kq � ExrEyrŷT�k �XT�kss � ErŷT�ksErXT�ks, (19)

with ErŷT�ks given as the prediction of the model and ErXT�ks � µXT�k
. We only have to estimate

expected value of product of the two random variables which can be expressed as:

EXrEyryT�k �XT�kss �

»
XT�k

�
µT�k

���
X�µXT�k

� JTµT�k
pXT�k � µXT�k

q

�
ppXT�kqdxT�k. (20)

This gives,

ExrEyryT�k �XT�kss � µT�k

���
X�µXT�k

µXT�k
� JTµT�k

tΣXT�k
u. (21)

So that the cross-covariance terms of the ΣXT�k
are given by

covpyT�k, XT�kq � JTµT�k
tΣXT�k

u. (22)

Now, that we have all components needed inference procedure that handles noisy inputs defined as

lagged predictions is described as Algorithm 1.

Algorithm 1 Multiple–steps–ahead GCRF regression

Input: Test data X, model(αk, βl, θk, ψl)

1. Initialize ΣX� for each node in a graph with all zeroes

2. Make a one–step–ahead prediction of ŷT�1

for k � 2...K do

3. Update inputs according to the previous predictions ŷT�k�1

4. Update tΣX�u for the previously introduced noisy input using Eq. (22)

5. Predict following time step ŷT�k using non-corrected models predictions and Eq. 13

end for
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Appendix B: Gaussian Conditional Random Fields

Gaussian Conditional Random Fields (GCRF) [5] is a structured regression model. The model captures

both the network structure and the mapping from attribute values of the nodes (X) to variables

of interest (y). It is a model over a general graph structure (not only chains or trees), and can

represent the structure as a function of time, space, or any other user-defined structure. It models

the structured regression problem as estimation of a joint continuous distribution over all nodes and

takes the following log-linear form:

P py|Xq �
1

Z
expp�

Ķ

i�1

Ķ

k�1

αkpyi �Rkq
2 �

¸
i�j

Ļ

l�1

βlSij
plqpyi � yjq

2q (23)

where α and β are parameters of the feature functions, which model the association of each yi and

X, and the interaction between different yi and yj in the graph, respectively. Here Rk functions are

any pre–trained unstructured predictors that map X Ñ yi independently, and might also be used to

incorporate domain specific models. Similarity matrix Sl is used to define the weighted undirected

graph structure between labels.

This choice of quadratic feature functions enables representation of this distribution as a multivariate

Gaussian [5] to ensure efficient and convex optimization:

P py|Xq �
1

p2πq
N
2 | Σ |

1
2

exp

�
�

1

2
py � µqTΣ�1py � µq



(24)

where Σ�1 represents the inverse covariance matrix:

Σ�1 �

#
2
°K
k�1 αk � 2

°
g

°L
l�1 βlS

plq
ig , i � j

2
°L
l�1 βlS

plq
ij , i � j

(25)

The posterior mean is given by

µ � Σb, (26)

where b is defined as

bi � 2

�
Ķ

k�1

αkRk

�
. (27)

This specific way of modeling will allow efficient inference and learning. Additionally, the GCRF

model can, due to its Gaussian form, intrinsically highlight areas of the input space where prediction

quality is poor by indicating the higher variance around the predicted mean.

Learning and inference: The learning task is to optimize parameters α and β by maximizing the

conditional log–likelihood,

pα̂, β̂q � argmaxlooomooon
α,β

logP py|X;α, βq. (28)

Parameters α and β are learned by a gradient-based optimization. Gradients of the conditional log-

likelihood are

BL
Bαk

� �
1

2
py � µqT

BΣ�1

Bαk
py � µq � p

BbT

Bαk
� µT

BΣ�1

Bαk
qpy � µq �

1

2
TrpΣ

BΣ�1

Bαk
q (29)
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BL
Bβl

� �
1

2
py � µqT

BΣ�1

Bβl
py � µq �

1

2
TrpΣ

BΣ�1

Bβl
q (30)

Maximizing the conditional log–likelihood is a convex objective, and can be optimized using standard

Quasi-Newton optimization techniques. Note that there is one constraint that is needed to assure that

the distribution is Gaussian, which is to make the Σ�1 matrix positive-semidefinite. To ensure this

and make the optimization unconstrained, the exponential transformation of parameters αk � euk and

βl � evl is used [5]. The GCRF model is Gaussian and, therefore, the maximum a posteriori estimate

of y is obtained at the expected value µ of the GCRF distribution.
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Appendix C: Comparison models

Gaussian Processes as an iterative model

A Gaussian process regression is a powerful framework which is a generalization of a multivariate

Gaussian distribution over finite vector space to a function space of infinite dimension [6]. Assumption

of a Gaussian prior is present over functions that map xÑ y. Gaussian processes are defined with

fpxq � GP pmpxq, kpx, x1qq, (31)

where mpxq is the mean function and kpx, x1q is the covariance function in the form of a kernel that

is required to be positive definite. In our experiments, we are using a Gaussian kernel

Spxi, xj , ψq � ψ0exp

�
�

1

2

Ḑ

d�1

pxid � xjdq
2

ψ2
d

.

�
. (32)

If we denote covariance of the training part as C � K�σ2
yIN , Kij � kpxi, xjq, the joint density of the

observed outputs y and test output y� is presented as

�
y

y�



� N

�
0,

�
C k�
kT
� c�

��
, (33)

where k� is the covariance vector for the new test point x�. The posterior predictive density is given

by

ppy�|x�,X,yq � N py|0, Cq, (34)

µ� � kT
� C

�1y, σ2
� � c� � kT

� C
�1k�. (35)

The σ2
� is the predictive variance or uncertainty at test point x� [6]. In order to take account of the

uncertainty of future predictions which provide the ’inputs’ for estimating further means and uncer-

tainties, test points are considered as random inputs x� � N pµx� ,Σx�q and a Gaussian approximation

shown in [2, 4, 7]. Then, the predictive distribution of this iterative uncertainty propagation method

has mean and variance

µ� � kpµpx�qq
TC�1y, (36)

σ2
� � σ2pµpx�qq �

1

2
Tr

�
Σx�

B2σ2px�q

Bx�Bx�



�
Bµpx�q

Bx�

T

Σx�

Bµpx�q

Bx�
(37)

This approach has been successfully applied in the past in a model–based predictive control framework

for control of pH process benchmark [8].

Linear regression as an iterative and direct model

From the family of direct uncertainty propagation models we will use a linear parameterized model

(DLR) [3]. Linear regression form representation is:

y � XwT � ε, ε � N p0, σ2
yq (38)
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where w is an unknown set of weights. The weight and noise variance are estimated by ŵ �

pXTXq�1XT y and

σ2
y �

py �XŵT qT py �XŵT q

N � d� 1
, (39)

where X is matrix representation of all data available for training, N is the number of training examples

and d is the number of attributes. For the auto–regressive representation of Linear model we have

variance estimation, given prediction yT�k [3]:

σ2
T�k � σ2

y

�
1 �XT�kpX

TXq�1XT
T�k

�
. (40)

Then, the construction of confidence intervals for the new prediction yT�k are given by T–distribution

with n� d� 1 degrees of freedom for p1 � αq � 100% interval estimator�
yT�k � tn�d�1,α{2σ̂

b
1 � xT�kpXTXq�1xTT�k

�
. (41)

In the experimental section, this model will be noted as DLR. We will also apply it in an iterative

setup, and call it ILR.

GCRF with parameters sensitive to uncertainty of unstructured predictors (DGCRF)

To enable the GCRF model to propagate directly, we could allow it to be sensitive to the uncertainty

of the unstructured predictors, as in [9]. The idea is to observe parameters α of the GCRF model

described in Appendix B as functions rather than scalars. In order to allow GCRF to incorporate

uncertainty, α can be treated as non parametric function

αk,p �
euk,p

σ2
k,p

cik,p. (42)

where σ2
k,1 represents the uncertainty estimation of unstructured predictor k for the p’th time step.

Additionally, percentage of nodes that fall into the 95% confidence interval (cik,p) is used as a quality

index to augment this approach. For the direct approach to uncertainty propagation we will use the

Direct Linear Regression model described in Section as unstructured predictor.
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Appendix D: Additional Experimental Results for Iterative Uncer-

tainty Propagation Models

In this Appendix we provide additional experimental results to the ones that are presented in the

main paper. As in there we show results in terms of predictive error (Mean Squared Error– MSE) and

plots of predictions and propagating uncertainty.

First, we show the additional results of the iterative methods obtained on HCUP data, and afterwards

results of three types of experiments are shown:

• iterative models with lagged predictions as inputs - on disease networks,

• iterative models with input variables in addition to lagged predictions - on precipitation network,

• and direct models - on precipitation network.

Additional Experiments on Healthcare Data

Additional Experimental Results on Admission Rate Prediction

In addition to the Figures 2 and 3 from the main paper, we provide the following few figures in

Figure 1. We show predictions and confidence intervals of the extended GCRF model for several

different diseases. We can observe that there is no propagation if the model is doing a good job, since

the correction term does not increase excessively as distribution of input features remains relatively

unvaried. However, as soon as the model starts making errors in prediction and distribution of input

variables shifts, the confidence interval widens.

(a) Respiratory Failure (b) Male Genital Organs

Cancer

(c) Disorder of Lipid

Metabolism

(d) Eye Disorders

Figure 1: Predictions (red lines) and uncertainty estimates (gray area) of GCRF model for admission rates

of four different diseases (orange line) for 48 months (4 years) ahead (x–axis).

Additional Experimental Results on Mortality Rate Prediction

In addition to the top 6 killing diseases in California, shown in Figure 4 in the main paper, here we

present prediction of mortality rate for top twelve killing diseases in the state of California for the

extended GCRF model in Figure 2.
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1 Septicemia 2 Respiratory Failure 3 Acute Cereb. Disease 4 Pneumonia

5 Acute Myocar.

Infraction

6 Congestive Hearth

Failure

7 Aspiration Pneumonitis 8 Secondary Malignancies

9 Intracranial injury 10 Acute Renal Failure 11 Cancer of Bronchus 12 Complication of

Device

Figure 2: Predictions (red lines) and uncertainty estimates (gray area) of GCRF for mortality rate of top

twelve killing diseases in California (orange lines) for 48 months (4 years) ahead (x–axis).

Experiments on precipitation network

Adding inputs in iterative predictions

In some applications, the input variables might be available in the future. In our climate application,

in addition to precipitation, there are 6 more variables at each node which we use as input attributes

for each station. These variables are acquired from the NCEP/NCAR Reanalysis 1 project [10], which

is using a state-of-the-art analysis/forecast system to predict climate parameters using past data

from 1948 to the present (data available on NOAA website: http://www.esrl.noaa.gov/psd/). These

6 variables are omega (Lagrangian tendency of air pressure), precipitable water, relative humidity,

temperature, u-wind, and w-wind (zonal and meridional components of the wind, respectively).

Thus, iterative models can potentially include these input variables in their predictions. However, this

way of modeling leads to larger input dimensionality of the models and results in more progressive

uncertainty propagation, as shown in Figure 4. The results of this, iterative multiple steps ahead

prediction with input variables in terms of predictive accuracy are shown in Figure 3.
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Figure 3: MSE of one (blue) and multiple (red) steps ahead predictions of precipitation on all stations using

iterative methods with included input variables

(a) GCRF Station 1 (b) IGP Station 1

Figure 4: Predictions (red lines) and uncertainty estimates (gray area) of GCRF and IGP iterative models

with included inputs for precipitation (true values– orange line) for 96 months (8 years) ahead

Appendix E: Experimental Results for Direct Uncertainty Propaga-

tion Models

Direct models of uncertainty propagation on precipitation data

In our climate application, input variables are available over entire predictive horizon as outputs

from climate models, as mentioned in Appendix D. Thus, we were able to apply direct methods of

uncertainty propagation (DLR and DGCRF described in Appendix C).

Note that this way of modeling does not take into account lagged predictions as inputs: only features

of the nodes are used as inputs. The accuracy results are shown in Figure 5.

Figure 5: MSE of one (blue) and multiple (red) steps ahead predictions of precipitation on all stations using

direct methods

In Figure 6 we show training and testing time steps to demonstrate the level of uncertainty propagation
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for direct uncertainty propagation models. The DGCRF’s uncertainty propagation is completely

dependent on uncertainty propagation of the DLR model, as it is used as an unstructured predictor

to the DGCRF model. We can see that uncertainty increases rapidly and then stabilizes after just a

few time steps and remains relatively large over the entire prediction period.

(a) DGCRF (b) DLR

Figure 6: Predictions (red lines) and uncertainty estimates (gray area) of DGCRF and DLR direct models of

precipitation (true values– orange line) for 96 months (8 years) ahead.
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