%% Temple university CIS 2033 % A modern Introduction to Probability and Statistics % Chapter 4 - Discrete random variables % % Author: Djordje Gligorijevic % email: gligorijevic@temple.edu %% Example 1 % Plot the PMF of a binomial distribution by varying p % % N = 100; % p = {0.1, 0.5, 0.9} N = 100; X = 1:100; P = [0.1, 0.5, 0.9]; Y = zeros(100,3); % linestyle = cellstr(['-r'; '-b'; '-k'; '-g';'-m']); linestyle2 = cellstr(['.r'; '.b'; '.k'; '.g';'.m']); fig1 = figure; ah = axes('Fontsize', 15); for i=1:3 Y(:,i) = binopdf(X,N,P(i)); plot(X, Y(:,i), linestyle2{i,1}, 'linewidth', 3); % scatter(X, Y(:,i), linestyle2{i,1}, 'linewidth', 3); hold on; end xlim([0, 110]); ylim([0, 0.15]); title('The PMF of a binomial distribution'); xlabel('X'); ylabel('p_X'); legend(ah,'p=0.1','p=0.5', 'p=0.9','Location','NorthEast'); legend(ah,'boxoff') saveas(fig1, 'D2E1.fig'); saveas(fig1, 'D2E1.eps', 'epsc'); %% Example 2 % Plot the CDF of a binomial distribution by varying the value for p N = 100; X = 1:100; P = [0.1, 0.5, 0.9]; Y = zeros(100,3); linestyle = cellstr(['-r'; '-b'; '-k'; '-g';'-m']); fig2 = figure; ah = axes('Fontsize', 15); for i=1:3 Y(:,i) = binocdf(X,N,P(1,i)); stairs(X, Y(:,i), linestyle{i,1}, 'linewidth', 3); hold on; end xlim([0, 110]); ylim([0, 1.0]); title('The CDF of a binomial distribution'); xlabel('X'); ylabel('F_x'); legend(ah,'p=0.1','p=0.5', 'p=0.9','Location','SouthEast'); legend(ah,'boxoff') saveas(fig2, 'D2E2.fig'); saveas(fig2, 'D2E2.eps', 'epsc'); %% Example 3 % Plot the PMF of a geometric distribution by varying p % % N = 100; % p = {0.3, 0.5, 0.7} N = 100; X = 1:100; P = [0.3, 0.5, 0.7]; Y = zeros(100,3); linestyle = cellstr(['-.r'; '-.b'; '-.k'; '-.g';'-.m']); fig3 = figure; ah = axes('Fontsize', 15); for i=1:3 Y(:,i) = geopdf(X,P(1,i)); %plot(X, Y(:,i), linestyle2{i,1}, 'linewidth', 3); scatter(X, Y(:,i), linestyle2{i,1}, 'linewidth', 3); hold on; end xlim([0, 110]); ylim([0, 0.25]); title('The PMF of a geometric distribution'); xlabel('X'); ylabel('p_X'); legend(ah,'p=0.1','p=0.5', 'p=0.9','Location','NorthEast'); legend(ah,'boxoff') saveas(fig3, 'D2E3.fig'); saveas(fig3, 'D2E3.eps', 'epsc'); %% Example 4 % Plot the CDF of a geometric distribution by varying the value for p N = 100; X = 1:100; P = [0.3, 0.5, 0.7]; Y = zeros(100,3); linestyle = cellstr(['-r'; '-b'; '-k'; '-g';'-m']); fig4 = figure; ah = axes('Fontsize', 15); for i=1:3 Y(:,i) = geocdf(X,P(1,i)); stairs(X, Y(:,i), linestyle{i,1}, 'linewidth', 3); hold on; end xlim([0, 110]); ylim([0.5, 1.03]); title('The CDF of a geometric distribution'); xlabel('X'); ylabel('F_x'); legend(ah,'p=0.1','p=0.5', 'p=0.9','Location','SouthEast'); legend(ah,'boxoff') saveas(fig4, 'D2E4.fig'); saveas(fig4, 'D2E4.eps', 'epsc');