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Motivation




T Motivation

* Having good prediction accuracy alone is often not enough.

= Reporting uncertainty estimation of the prediction is very important, especially in
domains where predictions are used for important decision-making, such as
health.

= Eg., predicting admissions in a hospital as 15.026+10.000 vs. 15.000+150

= We aim to address this important topic - to improve the estimation quality of
prediction uncertainty in the GCRF model

= We introduce several extensions to the Gaussian Conditional Random Fields
model, which aim to provide higher quality uncertainty estimation.



[' Evolution of The Top 12 Killing Diseases in SID CA

» Capture disease trends and estimate their value in the future

2-Septicemia 131:Respiratory failure; arrest 109:Acute cerebrovascular disease w10t 122:Pneumonia
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II Healthcare Application:

Disease Networks

»Goal: Predict monthly hospital admission for 253 disease
categories in California for each month of the year 2011 in
order to facilitate decision making and improve health care
delivery

»Data: HCUP California state inpatient database

= Experiments conducted on 24 monthly graph snapshots (~8M
inpatients)

» Representation: Monthly phenotype-disease graph
= Nodes: 253 disease categories (CCS codes)
= Links:
v’ Disease comorbidities (displayed on the right)
v Disease similarities over the previous 3 months

Disease comorbidity graph



Methodology and
Approaches




II Structured Learning by Gaussian Conditional

Random Fields

e Gaussian Conditional Random Field (GCRF) model:

PO/ 1) = 5 oo XPO A Y )+ 1B, ;X0

* Interpretation and modeling capabilities

A(a,yi,X)=—Z_lak(yi—Rk(x,i))z, LB,y Y, X) = Zﬂle(”s“)(x)(y. y,)? Q

* P(y|x) is Gaussian distribution
* Learning: finding parameters o and [3 is convex optimization
* Inference: Point estimate of y for given x is u, uncertainty is 2, where P(y | x)~N(u, X)
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Problem statement

T

= GCRF can exploit the graph structure for regression.
= However GCRF uncertainty estimation is not taking into account:
1. Uncertainty of unstructured predictors,
2. Distribution of input data,
= under-confident predictions with high predictive uncertainty!

- For example prediction of Sepsis admission: ~ 9,059 + 15,867

= Goal: Solve these two problems to significantly improve GCRF uncertainty
estimation.

= The idea: Use functions instead of scalars as the GCRF parameters.
N

P(y|x) = Z(Xla B) exp(— 2 (vi — R (x,1))? _Zﬁleij(l)sigl)(x)(yi — yj)z)




I_['I 1. The uGCRF approach

» Parameters of unstructured predictors, «;, now become dependent
on uncertainty estimation of unstructured predictors a,gp

(uncertainty of predictor k in time step p)

Fp =" 2 p =€

» It captures the uncertainty of unstructured predictors thus providing
“healthier” degree of belief towards it,

» Cons: not able to adapt to the errors, model is making, while
predicting.



T 2. The ufGCRF approach

» Parameters of unstructured predictors, «;, now become
parametrized functions (feed-forward Neural Networks) of input
variables X for each node in a graph

a, (6, , X) = e ) — g2 B, =e"

» It better adapts to errors the unstructured model is making, as it
uses previous time-steps as inputs
» Experimentally we demonstrate that this approach is better!
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Experiments




'][' Experimental set-up

= Prediction of monthly hospital admission for 253 disease categories (nodes) in
California for 12 months in 2011

= We normalize values and predict with linear and non-linear predictors with
different values of lag

* Modelling setup:
= Use all models in an autoregressive fashion and predict one-step-ahead

= Move 12 month training window and obtain next month’s prediction, repeat for
1 year.

= Evaluation:
= Predictive accuracy (Root Mean Squared Error (RMSE))
= Quality of uncertainty estimate (Negative Log Predictive Density (NLPD))



Benchmarks

T

= Linear and non-linear unstructured models are trained with up to 3 previous time
steps used as inputs (lagl, lag2, lag3):

Linear Regression (lagl, lag2, lag3)

Gaussian Processes Regression (lagl, lag2, lag3)

GCRF

UGCRF (GCRF with parameters sensitive to uncertainty of unstructured predictors)
ufGCRF (GCRF with parameters modeled as feed-forward NN)
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'][' Utilization of disease graph structure

0.06 -

»We are considering several graphs:
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ITI Experiment 1: Disease admission for each of 12

months - Hepatitis admission prediction

» Confidence estimation (u+1.96*06, where [ is
mean and o is standard deviation) of
predicted admission for 12 months using
ufGCRF was much better than when usin
GCRF.

v' GCRF prediction : ~ 442 + 544

Prediction

2r

v' ufGCRF prediction: ~ 527 + 289
v' True admissions: : ~ 478 + 167

-0.5

0 5 10 15 20 25
Timesteps

GCRF uncertainty region (red) vs ufGCRF uncertaiﬂ;ty region
(blue). Values are normalized.



ITI Experiment 1: Disease admission for each of 12

months - Sepsis admission prediction

>Confidence estimation (u+1.96*c, where p is |

mean and o is standard deviation) of predicted o
admission for 12 months using ufGCRF was much
better than when using GCREF. "5"

v" GCRF prediction : ~ 9,059 + 15,867
v" ufGCRF prediction: ~ 10,791 + 3,539
v True admissions: : ~ 11,400 + 4,128

Prediction

0 5 10 15 20 25
Timesteps

GCRF uncertainty region (red) vs ufGCRF uncertai%y region
(blue). Values are normalized.



| | Experiment 2: ufGCRF compared to alternative methods

on all diseases - RMSE and NLPD results

RMSE results for disease Admissions on Average NLPD values over all diseases for all
all 12 prediction months 12 prediction months

i :

= GCRF provides lower quality of uncertainty estimation in
this dataset.
= The two extensions significantly improve predictive

= ufGCRF provided the best balance between predictive accuracy outperforming all of the unstructured predictors.
accuracy and quality of uncertainty estimation

o

0.35
-0.001

0.3

-0.002
0.25 .0.003
0. .0.004
045 -0.005
-0.006
0.
-0.007
0.05
-0.008

-0.009
GP GCRF uGCRF ufGCRF
= Graph structure improves predictive accuracy

= Two extensions uGCRF and ufGCRF introduce small
additional error to predictive accuracy.

N

[N

o

-0.01



ITI Experiment 3: Quality of uncertainty estimate for

all diseases admission for each of 12 months

»The uncertainty estimation is evaluated by
the NLPD metric (lower values are better).

»Red bars - optimal uncertainty for
achieved predictions of models

»Blue bars - achieved uncertainty quality
for each disease.

2
>NLPD = ¥ 2 4 Jog(g2)

207,

» UfGCRF outperformed GCRF’s uncertainty
estimation for each disease
(uncertainty estimates are near optimal
ones for obtained prediction quality)

Quality of uncertainty

GeRF o

Optlmal quality of unc rtalnty

50 100 150 200
CCS Diseases

ufGCRF

-0.015 . ! ! :
0 50 100 150 200
CCS Diseases

Optimal (red) vs. achieved (blue) uncertainty quality
when using GCRF (top) and ufGCRF (bottom)
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Conclusions




Conclusions

T

In this study, the GCRF model is applied to a challenging problem of admission rate prediction,
based on a temporal graph built from HCUP (SID) data

In the experiments we characterize:

= several unstructured (Linear Regression and Gaussian Processes with lag 1, lag 2 and lag 3) and

- strtqctu:.ed predictors (original GCRF, uGCRF and ufGCRF) for their predictive error and quality of uncertainty
estimation.

= All three structured models outperformed unstructured ones in terms of predictive error,
showing that structure brings useful information to this prediction task

= Even though the original GCRF model showed the best performance in predictions, it had the
lowest quality of uncertainty estimation. Introducing small predictive error, uGCRF and ufGCRF
models gained large improvements in uncertainty estimation, especially the ufGCRF model that
had the better performance in prediction of these two GCRF model extensions.
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Thank you for your
attention!

Questions?




