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Abstract—Increased availability of Electronic Health Record (EHR) data provides unique opportunities for improving the quality of

health services. In this study, we couple EHRs with the advanced machine learning tools to predict three important parameters of

healthcare quality. More specifically, we describe how to learn low-dimensional vector representations of patient conditions and clinical

procedures in an unsupervised manner, and generate feature vectors of hospitalized patients useful for predicting their length of stay,

total incurred charges, and mortality rates. In order to learn vector representations, we propose to employ state-of-the-art language

models specifically designed for modeling co-occurrence of diseases and applied clinical procedures. The proposed model is trained

on a large-scale EHR database comprising more than 35 million hospitalizations in California over a period of nine years. We compared

the proposed approach to several alternatives and evaluated their effectiveness by measuring accuracy of regression and classification

models used for three predictive tasks considered in this study. Our model outperformed the baseline models on all tasks, indicating a

strong potential of the proposed approach for advancing quality of the healthcare system.

Index Terms—Electronic health records, healthcare quality, embedding models, neural language models
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1 INTRODUCTION

INPATIENT Quality Indicators (IQIs) were developed as a set
ofmeasures that provide a perspective on quality of patient

care in hospitals.1 These indicators include inpatientmortality
for certain procedures and medical conditions [1], length of
stay (LoS) [2], and total charges of an inpatient stay,2 and can
be considered as important metrics for evaluating quality of
care [3]. Thesemeasures can be used to help hospitals identify
potential problem areas that might need further studies and
provide the opportunity to assess quality of care inside hospi-
tals using administrative data found in typical discharge
records. On the other hand, transparency of these indicators
may help potential users of hospital care choose a hospital
that will fit their needs and their financial constraints. This
aspect is becoming an increasingly important issue as health-
care users are reportedly declaring personal bankruptcies
during hospitalizations either due to high hospital care prices,
or due to inpatient staying too long in a hospital when this
might not be necessary [4], [5], [6], [7].

Unsurprisingly, one of the important metrics that the
patients are worried about is how high their final hospital bill
will be. However, computing this value upfront is not a trivial
task, as pricing of health care services vary significantly
among different providers even for the most common

procedures. Each provider takes into account many parame-
ters before charging a patient, and the process is different for
different players in the industry. For example, Medicare takes
more than one hundred parameters to determine a hospitali-
zation reimbursement.3 For these reasons, many economists,
employers and health plans are advocating for providing the
price quote of health care services as a way to encourage con-
sumers to choose low-cost, high-quality providers and to pro-
mote competition based on the value of care.4

Length of stay is another importantmetric for assessing the
quality of health care, also useful for planning scheduling
capacity within a hospital. For instance, the United King-
dom’s Department of Health treats LoS as a key performance
indicator and uses it both to monitor hospital quality and to
manage patients’ expectations [8]. The length of time patients
spend in hospital beds is known to be a goodmeasure of utili-
zation for a number of hospital resources, including staffing
and equipment.As a result, the department publishes average
LoS on theNational Health Service (NHS)website5 as a hospi-
tal operations parameter to help patients make more
informed choices on which hospital to visit. Through such
increased transparency pressure is put on hospitals to
improve patient care, which involves providing more cost
efficient and standardized services often reflected in duration
of the service [2]. Thus, gaining a better understanding of LoS
provides an opportunity to reduce the time patients stay in
hospitals without affecting the quality of service,6 which is in
the financial and personal interests of hospitals and patients.

1. http://www.qualityindicators.ahrq.gov/Default.aspx, accessed
October, 2015.

2. http://www.cha.com/Documents/Publications/2012_Charge_
Report.aspx, accessed October, 2015.
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Additionally, early and accurate knowledge of LoS can aid
hospital administrators in management of bed occupancy.
This is a crucial problem faced by hospitals, which are pres-
sured to shorten the LoS, potentially increasing risk of patient
complications after discharge. Medicare was among the first
insurance companies to consider predicting length of hospital
stay for each inpatient and using it for diagnosis of related
groups [3]. The acceptance of length of stay as an indicator of
resource utilization has caused a surge of interest across the
healthcare industry in the predictability of LoS.

Increased penetration of information technologies in hos-
pital systems has enabled collections of vast amounts of data
in a form of large-scale Electronic Health Records (EHRs),
which became an important source of detailed patient infor-
mation within hospitals [9]. EHR data presents an unique
opportunity for data-driven progress in early and accurate
diagnostics and therapy, allowing medical staff to improve
patient’s care by learning from previous encounters [9], [10].

In recent years an increasing emphasis is given to the effec-
tive mining of clinical data in order to obtain actionable
insights for improving healthcare delivery, a concept often
termed “data-drivenhealthcare” [11], [12]. Data-driven health
care practitioners have been addressing various problems
aimed to improve healthcare quality [10], [13], [14], [15], [16].
The overall objective is to build a stable framework formodel-
ing different aspects of the healthcare systems, and to provide
significant insights to healthcare institutions and patients
alike. Some particularly important and impactful applications
are aimed towards predictivemodeling of health outcomes in
terms of diseases, procedures, mortality, and other measures
that may have a huge impact on quality of patient treatment.
Themodels are used to improve detection of high-risk groups
of patients, or detect important effects not taken into consider-
ation in priormedical treatments.

However, the modeling process is very challenging, as
healthcare observational data are often sparse, heteroge-
neous, and/or incomplete due to different hospital and
insurance policies, further aggravated by non-standardized
physician practices [17]. The existing data mining tools are
not fully capable of addressing the important task of health-
care modeling [18], and, in order to make use of multiface-
ted, noisy healthcare data sources, development of novel
efficient and effective machine learning approaches is
required.

In this study we address this important problem, and pro-
pose a novel approach that makes use of the latest advances
in the representation learning for the task of predicting inpa-
tient length of stay, pricing, and survival rates, with the objec-
tive of modeling the quality of healthcare services. In the
following sectionwepresent the proposed approach. Section 3
describes large scale EHRdatabase used in empirical analysis.
The analysis and experimental results are described in detail
in Section 4. Finally, we conclude our study anddiscuss draw-
backs of the current approach and provide suggestions for
futurework in Section 5.

2 THE PROPOSED APPROACH

In this section we present a novel approach for learning low-
dimensional, distributed representations of patient EHRs.
As a first step, we describe how to apply state-of-the-art,

unsupervised neural language models for learning embed-
dings of diseases and applied clinical procedures from the EHR
data of individual patients. Then, the obtained embeddings
are employed to find useful inpatient feature vectors, used to
train predictive models of the healthcare quality indicators in
a supervised manner. The entire pipeline of the proposed
methodology is illustrated in Fig. 2 and each step is presented
inmore details in the following sections.

2.1 Low-Dimensional Embedding Models

Assumewe are given a setR ofN hospital inpatient discharge
records (representing a single hospital visit) and setsD of pos-
sible diseases and P procedures. Then, a discharge record
ri ¼ ½ðdi1; . . . ; diDi

Þ; ðpi1; . . . ; piPiÞ� 2 R; i ¼ 1; . . . ;N; of the ith

patient is defined as a sequence of diseases di 2 D and proce-
dures pi 2 P at the end of a hospital stay. Here,Di is the num-
ber of diagnosed diseases and Pi is the number of applied
procedures in the sequence, so that Di þ Pi ¼ Hi and that
record is represented as ri ¼ ðhi1; . . . ; hiHi

Þ 2 R, where hil can

be a disease or a procedure in the sequence. Then, using the
setR, the objective is to findM-dimensional real-valued rep-

resentations vd 2 RM for every disease d and vp 2 RM for
every procedure p, such that similar diseases and procedures
lie nearby in the jointM-dimensional vector space and to use

them to build a patient vector representation xi 2 RM for
training predictive models of the healthcare quality
indicators.

Before discussing applications to specific healthcare
related prediction problems, it is intuitive to introduce neural
language models as applied to NLP. These methods take
advantage ofword order, and assume that closerwords in the
word sequence are statistically more dependent. Typically, a
neural language model learns the probability distribution of
the next word given a fixed number of preceding words that
act as the context. More formally, given a sequence of words
ðw1; w2; . . . ; wT Þ from the training data, the objective of the
model is tomaximize the average log-likelihood function,

L ¼ 1

T

XT
t¼1

logPðwtjwt�bþ1 : wt�1Þ; (1)

where wt is the tth word, and wt�bþ1 : wt�1 is a sequence of b
successive precedingwords that act as the context to theword
wt. A typical approach to approximate the probability distri-
bution Pðwtjwt�bþ1 : wt�1Þ is to use a neural network model
architecture [19]. The neural network is trained by projecting
the vectors for context words ðwt�bþ1; . . . ; wt�1Þ into a latent
representation with multiple non-linear hidden layers and
the output softmax layer comprising W nodes, where W is
the vocabulary size (in our task equal to the number of dis-
eases and procedures jDj þ jPj), while attempting to predict
wordwt with high probability.

When working with large-scale data, the vocabulary size
W can easily reachmillions. In those cases, training of the neu-
ral network becomes a challenging task, as updates of word
vectors become computationally expensive. For that reason,
recent approaches [20] propose log-linear models which aim
to reduce the computational complexity. The use of hierarchi-
cal softmax [21] or negative sampling [20] is shown to be effec-
tive in substantially speeding up the training process.
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2.2 disease+procedure2vec Method

In this section we propose disease+procedure2vec (dp2v)
approach for learning diseases and procedures representa-
tions (step 1 in Fig. 2) that extend models of the recently pro-
posed word2vec algorithm [20]. The key insight is that we can
represent the patients’ lists of diseases and procedures from
EHRs as sequences of tokens, and view each sequence as a
sample from someunknown language. Following this reason-
ing, the language model learns representations of diseases
and procedures in a low-dimensional space using each
patient discharge record as a “sentence” and the diseases and
procedures within the record as “words”, to borrow the ter-
minology from the NLP domain. Low-dimensional represen-
tations for diseases and procedures are learned by
maximizing the objective function L over the entire set R of
records as follows,

L ¼
X
r2R

X
hi2r

X
�b�m�b;m 6¼0

logPðhiþmjhiÞ: (2)

Probability PðhiþmjhiÞ of observing some “neighboring” dis-
ease/procedure hiþm given the current disease/procedure
hi is defined using the soft-max function as

PðhiþmjhiÞ ¼
expðv>hiv0hiþm

ÞPH
h¼1 expðv>hiv0hÞ

; (3)

where vh and v0h are the input and output M-dimensional
vector representations of disease/procedure h and hyper-

parameter b represents the length of the context for disease
records. Note that h can represents either d or p, with
H ¼ jDj þ jPj.

As illustrated in Fig. 1 and Equation (3), disease+procedur-
e2vec uses central disease/procedure hi to predict b dis-
eases/procedures that come before and b diseases/
procedures that come after it in the discharge record, an
architecture known as the SkipGram. As a result, diseases
and procedures that often co-occur and have similar con-
texts (i.e., with similar neighboring diseases and proce-
dures) will have similar representations as learned by our
model. Additionally, we have considered a continuous bag
of words architecture (CBOW), that uses context diseases
and procedures to predict a central disease or procedure,
however, the SkipGram architecture was consistently more
accurate than the CBOW (as shown in Fig. 3) and as such
was the one used in disease+procedures2vecmodel.

The disease+prodedure2vecmodel was optimized using sto-
chastic gradient ascent, suitable for large-scale problems.
However, computation of gradients is proportional to the
number of unique disease and procedures in the datasets,
which may be computationally expensive in practical tasks.
As an alternative, we used negative sampling approach [20],
which significantly reduces the computational complexity.

2.2.1 Patient Visit Representation

Having learned the disease and procedure vectors, we aim
to exploit them for the purpose of predicting total charges,
length of stay, and mortality. For this purpose, we generate
a data setM ¼ fðxi; yiÞ; i ¼ 1; . . . ; Ng, where for each record
ri the value of yi 2 Y represents one of the target variables:
LoS, total charges (TOTCHG), or binary mortality indicator,

and xi 2 RM is a patient’s feature vector calculated by sum-
ming vectors of diseases and procedures that appear in that
record [22] (step 2 in Fig. 2),

xi ¼
XDi

j¼1

vdij þ
XPi
l¼1

vpil : (4)

Once the data set M is generated, the learning task is to

find a prediction function f : RM ! Y, which maps each
patient visit into one of the three variables of interest
depending on the task (step 3 in Fig. 2). When predicting
LoS and TOTCHG this results in a regression problem,
while for mortality prediction the problem can be viewed as
a classification task.

Fig. 1. Graphical representations of the disease+procedure2vec model.
The model uses central disease/procedure hi to predict b diseases/pro-
cedures (colored yellow and blue, respectively) that come before and b
that come after it in the discharge record.

Fig. 2. Pipeline of the proposed approach: 1) Use the proposed embedding methodology to learn compact vector representation of diseases and pro-
cedure vd; vd 2 RM using raw EHR data 2 RjDjþjP j. 2) Generate inpatient representation X from the learned embeddings vd and vd. 3) Train regres-
sion and classification models to predict important indicators of healthcare quality y (LoS, TOTCHG and mortality for certain procedures and medical
conditions of an inpatient).
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2.2.2 The Analysis of Model Parameters

In Fig. 3 results obtained by varying vector dimension and
window size for both CBOW and SkipGram models are
shown for the task of predicting total charges. The Skip-
Gram model was consistently more accurate than the
CBOW model, thus we opted to use this model in disease
+procedures2vec approach. Varying parameter b did not
introduce much variation in the results for SkipGram, thus
we chose to set context neighborhood size to b ¼ 40, such
that model captures larger context and most of the diseases
and procedures in that record. From Fig. 3 we can see that
increasing parameter M improves the accuracy, however
dimensionality is increased, leading to a more complex
model that is more difficult to train. Dimensionality of the
embedding space was set to M ¼ 200, the parameter M was
chosen in such a manner as to avoid larger dimensionality
of the learned model while obtaining good predictive accu-
racy. Finally, we used 25 negative samples in each vector
update for negative sampling. Similarly to the approach
presented in [20], the most frequent diseases and proce-
dures were sub-sampled during the training phase.

3 EHR DISCHARGE DATABASE

For the purpose of this study we explored the State Inpatient
Database (SID),7 an archive that stores the inpatient dis-
charge abstracts from a number of data organizations. The
data is provided by the Agency for Healthcare Research and
Quality and is included in the Healthcare Cost and Utiliza-
tion Project (HCUP). In particular, we used the SID Califor-
nia database, which contains 35;844;800 inpatient discharge
records over a period of 9 years (from January 2003 to
December 2011) in 474 different hospitals. SID data provides
discharge records for each inpatient that may contain up to
25 diagnosis codes and up to 15 procedure codes in ICD9
coding schema that were applied during this particular
admission of the patient. This coding schema8 originates
from the 9th revision of the International Classification of

Diseases (ICD9), a hierarchical coding scheme which is a
part of standard diagnostic tools for epidemiology, health
management, and clinical purposes.

The disease coding process of EHR databases is tedious
work, even under the most obvious circumstances. It
requires proper application of theAHACodingClinic guide-
lines [23] and the Official Guidelines for Coding and Report-
ing for inpatient care [24], and documented physician notes
are mandatory for precise coding [25]. Thus diagnoses found
in the EHR records are ordered by their importance to the
patient’s reason of admission and hospital stay while
respecting given guidelines of diagnoses coding. As such,
EHR data possess a ‘grammar’ of diagnoses and procedures
codes, where contexts of different diseases and procedures
in discharge records may provide significant additional
information for the prediction of hospital quality indicators.

Additionally, the SID database contains information
about a hospital stay, including length of stay, total charges,
type of payment, insurance type, discharge month, and sur-
vival information. In total, the SID California database cov-
ers 13,004 unique disease codes (out of around 14,000
present in ICD9 schema), and 3,830 procedure codes (out of
around 4,000 present in ICD9 schema).

In Fig. 4 we plot the distribution of inpatient admissions by
primary payer (i.e., type of insurance). Histograms of diagno-
ses and procedures counts per visit are shown in Figs. 5 and 6,
respectively. Additionally, we show the number of recordsN ,
unique diseases jDj, and procedures jPj for four types of
health insurance in Table 1. To address different practices of
health insurance providers, we built non-overlapping cohorts
for each of four insurance groups and trained separate
embedding models for each of them. The experimental setup
and results are presented in the following section.

4 EMPIRICAL EVALUATION

In this section we first explore the embedding space learned
using the proposed method, validating that the vector rep-
resentations are meaningful and insightful. Then, we dis-
cuss linear predictive models used in the experiments, and
describe baseline approaches for low-dimensional embed-
ding. Lastly, we discuss experimental setup, give evaluation
metrics, and present the obtained results.

Fig. 4. Distribution of California inpatient hospital admissions by the pri-
mary payer (for a 2003-2011 period).

Fig. 3. R2 results obtained by varying vector dimension (M) and window
size (b) for SkipGram (sg) and CBOW (cbow) models for the task of
predicting total charges.

7. HCUP State Inpatient Databases (SID). Healthcare Cost and Utili-
zation Project (HCUP). 2005-2009. Agency for Healthcare Research and
Quality, Rockville, MD. www.hcup-us.ahrq.gov/sidoverview.jsp

8. http://www.who.int/classifications/icd/en/, accessed Septem-
ber 2015.
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4.1 Exploring Associations in the Embedding Space

The dp2v model maps each disease and procedure into a
common low-dimensional space, and in this section we pro-
vide evidence that such learned mappings are indeed medi-
cally relevant. In particular, we explored the embedding
space by retrieving the nearest procedures to diseases found
in the SID California database. This is done by choosing
most similar procedures for a query disease via calculating
cosine similarity of their vectors.

As examples of learned associations between diseases
and procedures we selected to find nearest procedures for
respiratory failure and congestive heart failure (CHF) two con-
ditions that exhibit high mortality among patients. We
retrieved 12 nearest procedures for each query disease, and
show the results in Table 2. We can see that for the respira-
tory failure the method retrieved several procedures that
serve to aid in breathing of the patient, such as insertion of
endotracheal tube, tracheostomy toilette, repair and plastic
operations on trachea, replacement of tracheostomy and
gastrostomy tube, intubation of respiratory tract, and oxy-
gen enrichment. We also see procedures that are commonly
applied prior to bronchus examination and for bronchus
cleaning, such as bronchoscopy for throat, trachea examina-
tion, and lavage of bronchus and trachea.

For the congestive hearth failure disease discovered associ-
ated procedures also confirm that dp2v embeddings are
medically relevant. Several procedures in the top 12 list
include different implants aimed to assist the heart (e.g.,
CRT, AICD) or electro method performed to stimulate heart
pumping (e.g., NIPS). Other procedures include heart trans-
plantation, aquapheresis (which treats fluid overflow that
can be caused by CHF), or endovascular removal of blood
clots that can be caused by a heart attack. The results vali-
date the quality of the learned representations, where medi-
cally relevant diseases and procedures were found to be
nearby in the embedding space.

4.2 Predictive Models

Several penalized linear models for regression and classifi-
cation tasks are used in our experiments, as suggested in
the relevant literature [26], [27]. In particular, for regression
problems we apply linear regression,

yi ¼ fðw; xiÞ ¼ wTxi þ "; " � Nð0; s2Þ; (5)

where " is a zero-mean Gaussian noise with variance s2. On
the other hand, for the classification problem we use the
logistic regression model,

yi ¼ fðw; xiÞ ¼ I

�
1

1þ exp
�� ðwTxiÞ

� > 0:5

�
: (6)

Vector w is an unknown set of weights for both predic-
tion models, and Ið�Þ is an indicator function equal to 1 if
the argument is true and 0 otherwise.

In addition, for both models we explored a number of
regularization approaches, ranging from ‘1 Lasso to over-
lapping group Lasso penalizations. We summarized the
training objectives of five penalized linear models in Table 3,
where ‘1 indicates Lasso norm and ‘q is norm of the non-
overlapping groups,wi andwGi

indicate a single dimension

of the weight vector and a group of dimensions defined by
the index set Gi, respectively. For the sparse group Lasso,
the index sets Gi do not overlap (i.e., Gi \Gj ¼ ;; 8i 6¼ j),
which is not the case for the overlapping group Lasso. The
index sets Gi for group Lasso models were defined in
groups of ten consecutive features, indexed from 1 to 10, 11
to 20, and so on until M � 9 to M (smaller groups showed
better performance). For the overlapping group Lasso the
index sets were defined as 1 to 20, 11 to 30, and so on. All �
parameters were set to be equal and chosen from range
½0:01; 0:1�, determined through cross-validation. In the con-
ducted experiments, an implementation from the efficient
SLEP9 package [28] is used for training the models.

Fig. 6. Histogram of procedures counts for 35 million hospitalizations in
California (on average 1:61 procedures were administered per patient
hospitalization).

Fig. 5. Histogram of diagnoses counts for 35 million hospitalizations in
California (on average 6:78 diagnoses were given per patient
hospitalization).

TABLE 1
Number of Inpatient Stays and Number of Diagnoses and
Procedure Codes Used for Different Healthcare Providers

Provider N jDj jPj jDj+jPj
Medicare 11;300;025 11;636 3;649 15;285
Medicaid 9;134;840 12;237 3;668 15;905
Private insurance 12;344;355 12;458 3;737 16;195
Self-pay 1;247;209 10;640 3;230 13;870

9. http://www.yelab.net/software/SLEP/, accessed October 2015.
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4.3 Low-Dimensional Embedding Baselines

As the objective of our work is to findmeaningful representa-
tions of diagnoses and procedures in a low-dimensional
space, we compare the proposed embedding approach to a
number of state-of-the-art alternatives. More specifically, we
considered Latent Dirichlet Allocation (LDA) [29], as a repre-
sentative of topic learning models, as well as spectral cluster-
ing [30] and modularity [31] approaches used for low-
dimensional representations of nodes in an undirected graph
representing co-occurrence of diagnoses and procedures. In
addition, we examined binary encoding in the original

RjDjþjPj space and applied PCAon such sparse representation.
In the following sections we briefly describe the baseline
embeddingmethods.

4.3.1 Binary Coding with Dimensionality Reduction

(DPCA)

A high-dimensional representation of EHR records is
obtained by creating a binary vector of jDj þ jPj entries cor-
responding to the total number of unique diagnoses and pro-
cedures found in the SID California database (the values of
jDj and jPj can be found in Table 1). Each entry in the
extended representation is either 0 or 1 depending whether
that particular diagnoses or procedure occurred in that dis-
charge record. As the dimensionality of this problem is large,
we apply PCA [32] to reduce dimensionality of the problem

to M dimensions (in our experiments we set the dimension-
ality of the embedding space toM ¼ 200 for all methods).

4.3.2 Spectral Clustering (Spec)

If we consider an undirected network G of co-occurrences of
diagnoses and procedures in hospital discharge data, we can

use advanced tools to learn node representation in RM space
using the information from the graph. The spectral clustering

method generates a representation inRM space from the first
M eigenvectors of L, a normalized graph Laplacian of graph
G [30]. The Laplacian is defined as L ¼ D�A, where
D ¼ diagðd1; d2; . . . ; dN; p1; p2; . . . ; pNÞ and A is the adjacency
matrix of G. The normalized Laplacian L is then defined as

L ¼ D�1=2LD�1=2: (7)

Then, we find the first M eigenvectors of the normalized
Laplacian and treat them as latent dimensions of nodes
from the graph G, thus inferring low-dimensional represen-
tations for both procedures and diagnoses.

4.3.3 Modularity (Mod)

Thismethod generates a representation inRM space from the
topM eigenvectors of B, the modularity matrix of G. For two
nodes i and j in the graph G with degrees di and dj, respec-
tively, the expected number of edges between these two

TABLE 2
Association of Procedures to Two High-Mortality Diseases Discovered by

Measuring Cosine Distance on Features Obtained Using dp2v Embedding Model

Neighbors of respiratory failure Neighbors of congestive heart failure

Insertion of endotracheal tube Insertion of implantable heart assist system
Tracheostomy toilette Implantation of cardiac resynchronization defibrillator total system (CRT-D)
Other lavage of bronchus and trachea Implantation of cardiac resynchronization defibrillator pulse generator (CRT-D)
Bronchoscopy through artificial stoma Insertion of percutaneous external heart assist device
Other oxygen enrichment Heart transplantation
Other repair and plastic operations on trachea Excision destruction or exclusion of left atrial appendage (LAA)
Fiber-optic bronchoscopy Aquapheresis
Infusion of vasopressor agent Automatic implantable cardioverter-defibrillator (AICD) check
Replacement of tracheostomy tube Noninvasive programmed electrical stimulation (NIPS)
Replacement of gastrostomy tube Removal of lead(s) [electrode] without replacement
Complete glossectomy Endovascular removal of obstruction from head and neck vessel(s)
Other intubation of respiratory tract Replacement of automatic cardioverter-defibrillator lead(s) only

TABLE 3
Overview of Linear Models Used in This Study

Penalty Optimization problem Model name Abbreviation Description

Lasso minw fðw; xÞ þ �kwk1 LeastR LR Least squares loss
LogisticR logR Logistic loss

Group Lasso minw fðw; xÞ þ �kwkq;1 glLeastR glLR Least Squares Loss
glLogisticR glLogR Logistic Loss

Fused Lasso minw fðw; xÞ þ �1kwk1 þ �2

PM�1
i¼1 jwi �wiþ1j fusedLeastR fLR Least Squares Loss

fusedLogisticR fLogR Logistic Loss

Sparse group Lasso minw fðw; xÞ þ �kwk1 þ
Pg

i¼1 �Gi
kwGi

k2 sgLeastR sgLR Least Squares Loss
sgLogisticR sgLogR Logistic Loss

Overlapping group Lasso minw fðw; xÞ þ �kwk1 þ
Pg

i¼1 �Gi
kwGi

k2 overlapping LeastR olLR Least Squares Loss
overlapping LogisticR olLogR Logistic Loss
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nodes in a uniform random graphmodel is
didj
2m , wherem rep-

resents the total number of edges in the graphs. Modularity
matrix Bmeasures the deviation of adjacency matrixA from
a uniform random graphwith the same degree distribution,

B ¼ A� 1

2m
dd>: (8)

While in many real graphs the adjacency matrixA is typically
very sparse, the modularity matrix B is typically dense. The
matrix B is then decomposed using SVD method and the

obtained eigenvectors of B encode information in RM space
about modular partitions of the graph G [31], which are used
to represent the nodes in a lower-dimensional space.

4.3.4 Latent Dirichlet Allocation

LDA is a popular latent topic model [29], shown to obtain a
state-of-the-art performance in a number of tasks bothwithin
and outside of the domain of the natural language process-
ing. Assuming a fixed number of topics that generated the
data, the model learns a topic distribution over the diseases
and procedures, effectively embedding them in the topic
space. Then, the found topical representations can be used as
feature vectors in the classification and regressionmodels.

4.4 Evaluation Metrics

For evaluation of the proposed regression methods we use a
goodness-of-fit metric R2 defined as follows,

R2 ¼ 1�
P

iðyi � ŷiÞ2P
iðyi � mÞ2 ; (9)

where yi and ŷi are true and predicted values of the target
variable for the record ri, respectively, and m is the mean
value for all records in the setR.

For evaluation of patient survival analysis we use an
accuracy measure defined as follows,

accuracy ¼ tpþ tn

tpþ fpþ tnþ fn
; (10)

where tp and tn denote true positives and true negatives,
respectively (i.e., correctly classified cases), while fp and fn
denote false positive and false negative test examples,
respectively (i.e., mistakenly classified cases).

4.5 Results

In this section we provide experimental results of three pre-
dictive tasks on four insurance data sets. Different rep-
resentations of diagnoses and procedures were trained for
each insurance data set, and learned using five competing
approaches. In particular, four datasets were created for each

of the insurance categories. From the first month of the obser-
vation period we sampled 100,000 records for training and
testing predictive models, while the remaining data was used
for learning the embedding models. From the 100,000 sam-
pled examples, 80 percent were randomly chosen for regres-
sion and classification training, while 20 percent were used
for testing. In addition, as hospitals currently reportmean val-
ues for TOTCHG, LoS, and survival rate, shown in Table 4,we
also use these values as a na€ıve baseline.We further comment
on their performance in the following sections.

4.5.1 Prediction of Total Charges (TOTCHG)

In this section we address the problem of predicting total
charges for a patient per hospital visit. As discussed previ-
ously, there are more than 100 factors that may influence
hospital charges, making the estimation of the exact value a
non-trivial problem. For example, Table 4 suggests that
Medicare patients are charged almost twice as much as the
other three groups of patients (which are similar with
respect to average charges). As Medicare patients are people
of age, we can assume that they are diagnosed with more
conditions and have more procedures performed compared
to the other three insurance groups.

We first used the mean TOTCHG computed on the train-
ing data as a trivial baseline predictor and measured its
accuracy on the test data for each provider. We observed
that this trivial predictor underperformed and obtained

R2 < 0. The result indicates that the information provided
by hospitals is of little value for an individual patient, and
in the following we explore more involved approaches for
this predictive task, where as an input we take into account
diagnosed diseases for a specific patient and a list of proce-
dures that might be applied.

In Table 5, we show the results in terms of R2 measure
obtained by five regression models for four insurance catego-
ries, making use of a 200-dimensional representations
obtained by various embedding methods. We observe that
the proposed dp2v model outperformed the baseline
approaches in all 20 experiments (for all five regression mod-

els and for all four insurance categories). TheR2 improvement
of using the proposed embedding over the best performing
alternative is on average around 20 percent. The obtained
results strongly suggest that the most useful representation
for predicting total charges is learned using dp2v model. We
also see that the LR regression model outperformed alterna-
tives in this application, and that themost difficult taskwas to
estimate costs for patients onMedicaid insurance.

4.5.2 Prediction of Length of Stay

The length of stay is one of the most important indicators of
quality of a hospital system, and is an important parameter
considered when choosing a hospital. Therefore, providing
LoS estimation for a specific visit is a very important task.
Many hospitals are handling these predictions by reporting
the mean length of stay. Similarly to the total charges, our
experiments indicate that such a summary statistic is not
informative for individual patients (R2 < 0).

In this study we consider a patient that is diagnosed with
several diseases, and we account for procedures suggested
for this patient in order to estimate the patient’s length of
stay. The results of five regression models learned on latent

TABLE 4
Average Total Charges, Length of Stay in Days, and

Survival Rate for Four Datasets from SID California Database

Provider TOTCHG LoS Survival rate

Medicare $50;878:02 5:94 0:96
Medicaid $30;264:11 4:51 0:99
Private insurance $29;412:26 3:71 0:99
Self-pay $31;824:64 3:97 0:98
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features projected by the competing models are shown at
Table 6. We observe that the proposed dp2v model was the
best choice in 18 out of 20 experiments, obtaining average
accuracy improvements up to 34 percent for Medicare, 19
percent for Medicaid, and 20 percent for self-pay patients
over the best performing alternative. Interestingly, for pri-
vate insurances the proposed model did not provide
improvement for all predictive models. Nevertheless, the
model that performed the best on this dataset used features
learned by the dp2v embedding method. We can conclude
that the proposed embedding approach provides the best
features for prediction of length of stay among the consid-
ered models overall.

4.5.3 Prediction of Inpatient Survival

Lastly, we turn our attention to estimating patients mortal-
ity, which we use as an ultimate quality indicator of hospital
care considered in this study [33]. More specifically, the pre-
diction task was to estimate patient’s survival probability,
taking into consideration diagnosed conditions and con-
ducted procedures.

From Table 4, we observe that data sets for this predic-
tion task are highly imbalanced. Therefore, in order to make
a fair comparison we drew a balanced sample for each of
the insurance categories and learned classification models
on such data. From Table 7 we observe that survival for the
Medicare group was the most difficult to predict, and that
for the private insurance group classification models per-
form the best when compared to other insurance categories.
Nevertheless, mirroring the result from the previous

TABLE 5
R2 Results Obtained for Predicting Total Charges by

Five Regression Models for Four Insurance Categories

LR glLR fLR sgLR olLR

Medicare

dp2v 0.6454 0.6388 0.5846 0.3641 0.4204
Spec 0.5584 0.5274 0.3487 � 0 0.02218
Mod 0.5635 0.5235 0.3628 � 0 � 0
LDA 0.2022 0.2040 0.1955 0.2141 0.2008
dPCA 0.5059 0.4805 0.3300 � 0 0.0005

Medicaid

dp2v 0.5850 0.5805 0.5646 0.4550 0.4550
Spec 0.5155 0.5138 0.4423 0.1892 0.2836
Mod 0.5163 0.5092 0.4490 0.0945 0.1769
LDA 0.2052 0.2046 0.1974 0.1630 0.1511
dPCA 0.4112 0.4118 0.3094 0.0601 0.1166

Private insurance

dp2v 0.6553 0.6434 0.5930 0.2903 0.3773
Spec 0.5744 0.5539 0.4401 0.1038 0.1801
Mod 0.5757 0.5516 0.4111 0.0196 0.0374
LDA 0.1936 0.1932 0.1692 0.1610 0.1516
dPCA 0.5688 0.5438 0.4967 0.0768 0.1875

Self-pay

dp2v 0.6093 0.5954 0.5575 0.3281 0.3375
Spec 0.5246 0.4989 0.4100 0.0686 0.1491
Mod 0.4756 0.4672 0.3680 0.0194 0.0879
LDA 0.0939 0.0945 0.0864 0.0787 0.0455
dPCA 0.6048 0.5706 0.4390 0.1057 0.1689

TABLE 6
R2 Results Obtained for Predicting LoS by

Five Regression Models for Four Insurance Categories

LR glLR fLR sgLR olLR

Medicare

dp2v 0.4356 0.4260 0.3872 0.2687 0.3411
Spec 0.4092 0.3989 0.2840 0.0598 0.0935
Mod 0.4136 0.3955 0.2569 � 0 � 0
LDA � 0 � 0 � 0 � 0 � 0
dPCA 0.3337 0.3149 0.2538 � 0 0.0005

Medicaid

dp2v 0.3220 0.3178 0.3089 0.1876 0.1964
Spec 0.2691 0.2571 0.1906 0.0392 0.0818
Mod 0.2910 0.2641 0.1813 0.0093 0.0259
LDA � 0 � 0 � 0 � 0 � 0
dPCA 0.2715 0.2575 0.1703 0.0253 0.0423

Private insurance

dp2v 0.3657 0.3599 0.3874 0.0493 0.1230
Spec 0.3463 0.3507 0.2528 0.0155 0.0321
Mod 0.3508 0.3574 0.2404 � 0 0.0125
LDA � 0 � 0 � 0 � 0 � 0
dPCA 0.2893 0.3448 0.2342 0.0702 0.1254

Self-pay

dp2v 0.2402 0.2383 0.2137 0.0766 0.0945
Spec 0.1402 0.1279 0.0813 � 0 0.0026
Mod 0.1459 0.1290 0.0743 � 0 � 0
LDA � 0 � 0 � 0 � 0 � 0
dPCA 0.0876 0.0774 0.0432 � 0 0.0015

TABLE 7
Mortality Prediction Accuracy by Five Classification

Models for Four Insurance Categories

logR glLogR fLogR sgLogR olLogR

Medicare

dp2v 0.6256 0.6131 0.5385 0.5433 0.5332
Spec 0.4923 0.4923 0.4923 0.4923 0.4923
Mod 0.4923 0.4923 0.4923 0.4923 0.4923
LDA 0.4928 0.4928 0.4928 0.4928 0.4928
dPCA 0.4825 0.4825 0.4825 0.4825 0.4825

Medicaid

dp2v 0.8289 0.8273 0.7796 0.7566 0.7928
Spec 0.5066 0.5066 0.5066 0.5066 0.5066
Mod 0.5066 0.5066 0.5066 0.5066 0.5066
LDA 0.5164 0.5164 0.5164 0.5164 0.5164
dPCA 0.5000 0.5000 0.5000 0.5000 0.5000

Private insurance

dp2v 0.8714 0.8643 0.7405 0.7619 0.7524
Spec 0.5167 0.5167 0.5167 0.5167 0.5167
Mod 0.5167 0.5167 0.5167 0.5167 0.5167
LDA 0.4881 0.4881 0.4881 0.4881 0.4881
dPCA 0.5769 0.5769 0.5769 0.5769 0.5769

Self-pay

dp2v 0.8435 0.8252 0.6125 0.6357 0.5391
Spec 0.4951 0.4951 0.4951 0.4951 0.4951
Mod 0.4951 0.4951 0.4951 0.4951 0.4951
LDA 0.4792 0.4792 0.4792 0.4792 0.4792
dPCA 0.4764 0.4764 0.4764 0.4764 0.4764
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experiments, we can see that the features learned by the
dp2v method resulted in the highest accuracy, outperform-
ing the competing approaches by a significant margin.

5 CONCLUSION

In this paper we proposed a novel unsupervised approach
for learning representations of inpatients, diseases and pro-
cedures from large hospitalization records database, build-
ing upon the latest advances in neural embedding language
models. We compared our approach to four competitive
baselines on three different predictive tasks, where we
applied five regression and classification models. Experi-
ments on predicting important inpatient quality indicator
values for a potential patient stay were conducted on a
large-scale inpatient EHR database, with four cohorts
defined according to insurance categories. Benefits of using
the proposed embedding approach versus the alternatives
were shown of a majority of conducted experiments, dem-
onstrating the power of the proposed approach and its
potential for modeling healthcare quality. However, the
methodology still possesses drawbacks in terms of model-
ing diseases and procedures embeddings. For example, cur-
rently the model does not account for the concept of
primary diagnosis and secondary diagnoses, heterogeneity
of a disease is not captured well by the given approach and
multiple visits of same patients, including readmission, are
not included in the modeling process. Modeling longitudi-
nal effects and addressing disease heterogeneity will be the
focus of our future work.
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