
Time-Aware User Embeddings as a Service
Martin Pavlovski∗
Temple University
Philadelphia, PA

martin.pavlovski@temple.edu

Jelena Gligorijevic∗
Yahoo! Research
Sunnyvale, CA

jelenas@verizonmedia.com

Ivan Stojkovic
Yahoo! Research
Sunnyvale, CA

ivans@verizonmedia.com

Shubham Agrawal
Yahoo! Research
Sunnyvale, CA

shubhama@verizonmedia.com

Shabhareesh Komirishetty
Yahoo! Research
Sunnyvale, CA

shabha@verizonmedia.com

Djordje Gligorijevic
Yahoo! Research
Sunnyvale, CA

djordje@verizonmedia.com

Narayan Bhamidipati
Yahoo! Research
Sunnyvale, CA

narayanb@verizonmedia.com

Zoran Obradovic
Temple University
Philadelphia, PA

zoran.obradovic@temple.edu

ABSTRACT
Digital media companies typically collect rich data in the form
of sequences of online user activities. Such data is used in vari-
ous applications, involving tasks ranging from click or conversion
prediction to recommendation or user segmentation. Nonetheless,
each application depends upon specialized feature engineering that
requires a lot of effort and typically disregards the time-varying
nature of the online user behavior. Learning time-preserving vec-
tor representations of users (user embeddings), irrespective of a
specific task, would save redundant effort and potentially lead to
higher embedding quality. To that end, we address the limitations
of the current state-of-the-art self-supervised methods for task-
independent (unsupervised) sequence embedding, and propose a
novel Time-Aware Sequential Autoencoder (TASA) that accounts
for the temporal aspects of sequences of activities. The generated
embeddings are intended to be readily accessible for many prob-
lem formulations and seamlessly applicable to desired tasks, thus
sidestepping the burden of task-driven feature engineering. The pro-
posed TASA shows improvements over alternative self-supervised
models in terms of sequence reconstruction. Moreover, the embed-
dings generated by TASA yield increases in predictive performance
on both proprietary and public data. It also achieves comparable
results to supervised approaches that are trained on individual
tasks separately and require substantially more computational ef-
fort. TASA has been incorporated within a pipeline designed to
provide time-aware user embeddings as a service, and the use of its
embeddings exhibited lifts in conversion prediction AUC on four
audiences.
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403371

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; Neural networks; Dimensionality reduction and manifold
learning; • Information systems→ Online advertising; Computa-
tional advertising.

KEYWORDS
user representation; neural embeddings; sequential models

ACM Reference Format:
Martin Pavlovski, Jelena Gligorijevic, Ivan Stojkovic, Shubham Agrawal,
Shabhareesh Komirishetty, Djordje Gligorijevic, Narayan Bhamidipati, and Zo-
ran Obradovic. 2020. Time-Aware User Embeddings as a Service. In Proceed-
ings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining USB Stick (KDD ’20), August 23–27, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3394486.3403371

1 INTRODUCTION
The present-era Internet businesses operate on the basis of im-
mense amounts of user-generated data. Digital media companies
have access to such data sources and seek to leverage them for
understanding the online behavior of users. Nevertheless, modeling
user behavior is typically tied to various prediction problems in the
realm of advertising, user profiling, or recommendation. Therefore,
individual teams in digital media companies are working on differ-
ent user-related prediction problems. Often, a prediction problem
needs to be addressed for various clients/advertisers/campaigns
individually, thus introducing a separate prediction task for each
of them. Considering the broad range of such prediction tasks, ad-
dressing them requires investing significant time and effort into
feature engineering. Even though different teams may be working
on different tasks, if the tasks are centered around users, the teams
might be using overlapping aspects of the same data source(s). This
results in redundant preprocessing efforts for the teams involved.
To avoid feature engineering altogether, a team might consider
supervised deep learning models to learn latent representations
of users tailored for the team’s particular task without manually
preprocessing the original user data. However, these models are
usually heavily parameterized in accordance with the large scale

https://doi.org/10.1145/3394486.3403371
https://doi.org/10.1145/3394486.3403371

of the data. Since a separate deep model would need to be trained
for each task, this is prohibitively expensive keeping in mind that
low serving time remains among the top priorities. On the other
hand, low latency can be maintained to accommodate serving time.
For this purpose, lighter models may be leveraged. Despite their
efficiency, the main drawback of these models is that they require
the input to be properly encoded (usually through one-hot encod-
ing) which results in the creation of billions of sparse features. For
instance, consider a Logistic Regression model that learns to predict
user conversions based on a sequence of activities that the user
performed. Due to the large number of possible web activities that
a user can perform, the number of resulting engineered features
(e.g., one-hot encoded, including cross-features) can be in the order
of billions. Moreover, having to consider different web activities for
different tasks requires redundant construction of a huge number
of features for each task which introduces a notable computational
burden to the individual teams.

An alternative to feature engineering is to use solely a set of task-
invariant user features such as demographic features (e.g. location,
age and gender), which are usually accessible to all (or most of the
teams) in digital media companies. These features are commonly
used for various tasks due to their low cardinality.

Motivated by the aforementioned challenges and the recent ad-
vancements in unsupervised representation learning [5, 15, 32–34,
38], we propose the Time-Aware Sequential Autoencoder (TASA),
an autoencoder model that learns time-preserving representations
of user trails (also referred to as user embeddings) from a collection
of online activity sequences. The fact that TASA (1) embeds users in
an unsupervised manner and (2) considers all activities that a user
may perform instead of focusing on a subset of activities tailored
for a certain task, allows for learning task-independent representa-
tions. Moreover, TASA learns additional temporal scores for each
activity to account for the irregular time gaps between consecu-
tive activities and preserves this information in the resulting user
embeddings. For the advantages of TASA over other autoencoder-
based embedding approaches, the reader is referred to Table 1.

Further, we propose a pipeline that integrates TASA to allow
for using embeddings as a service which in this work is described
through, but is not limited to, user embeddings. As a part of the
pipeline, the user activities collected during a certain period of
time are fetched from multiple data sources and organized into
sequences, also referred to as user trails. TASA is then trained on
the constructed user trails. Upon training, TASA outputs the em-
beddings for all users and stores them in a centralized database
asM-dimensional continuous vectors, whereM is typically in the
order of hundreds. Analogously, the learned parameters of TASA
are stored in a separate database. From that point onward, any
incoming user trail, or individual activity, can be embedded us-
ing the trained TASA model and its embedding can be stored in
the centralized embedding database. Indeed, one of the pipeline’s
merits is its ability to generate embeddings even for entirely new,
previously unobserved users as long as TASA has observed some
of the activities from their trails.

In the proposed pipeline, at all times, different teams are able to
(1) query the centralized database, (2) obtain a set of embeddings,
(3) concatenate the retrievedM-dimensional embeddings to the fea-
tures that are already in use by the teams and (4) directly continue

using low-latency supervised models for their downstream predic-
tion tasks, without the need of any feature engineering or manual
preprocessing interventions. Constituting a central component of
the pipeline, the time-aware autoencoder design of TASA enables
automatic generation of low-dimensional, time-preserving user
embeddings applicable to any user-level task while maintaining
the ability to use low-latency supervised models. We believe that
providing these embeddings as a service to the teams will sidestep
the burden of task-driven feature engineering.

In the conducted experiments, TASAwas run on both proprietary
and public data and compared against a number of autoencoder
variants, some of which constitute the current state-of-the-art in un-
supervised representation learning. The performance of TASA and
its alternatives has been assessed in both unsupervised and super-
vised settings. The experimental results indicate that autoencoders
capable of learning time-preserving embeddings lead to more ac-
curate sequence reconstruction. Subsequently, the performance of
supervised baselines was evaluated with respect to several super-
vised tasks. The supervised models for these tasks were trained
also on the user embeddings learned by each unsupervised em-
bedding approach, in addition to commonly available information
about users. The findings suggest that using TASA’s user embed-
dings yields 1) the largest percentage increases in AUC consistently
for all supervised tasks compared to the alternative unsupervised
embedding variants, and 2) comparable results to a supervised
high-latency deep model learned on each task separately. TASA
also outperforms a low-latency logistic regression model, learned
on each task separately with one-hot encoded features in addi-
tion to commonly available demographic information about users.
Note that, even though it is out of the scope of this paper, learning
time-preserving user representations, irrespective of a certain task,
can be applied beyond the realm of supervised tasks. Indeed, the
generated user embeddings can also be used for different tasks
of unsupervised nature, including user co-clustering and building
custom user segments, among others.

TASA was also integrated into the pipeline designed to provide
time-aware user embeddings as a service, which is currently de-
ployed as an internal tool and is being utilized by several teams
in the company as a source of additional user features, mainly for
offline experimentation. Offline conversion prediction experiments
have been conducted on four different audiences. The findings pro-
vide evidence that improvements in AUC are achieved when the
TASA-generated user embeddings, within the service pipeline, are
leveraged in addition to the current features used in production.

2 RELATEDWORK
Unsupervised representation learning as an umbrella term encom-
passing multiple concepts, mainly dimensionality reduction, feature
projection and manifold learning, has been extensively studied. A
large spectrum of unsupervised embedding methods have been
developed, from learning clustering-based representations, up to
linear [19, 23, 28] and non-linear [16, 29, 35, 39] embedding meth-
ods, intended mostly for dimensionality reduction and manifold
learning. Recently, end-to-end approaches for learning compact
yet informative feature representations gained in popularity. Au-
toencoders constitute a representative class of such approaches.

Table 1: Advantages and limitations of the proposedTASAand alternative autoencoder variants.More details on the alternative
approaches are provided in Section 5.1.1.

Dense vectorial Sequential Temporal Leverages stop features Scores the influences of activities
Model embeddings information information as temporal timestamps and timestamps on the user embeddings
Conventional AE ✓ ✗ ✗ ✗ ✗

seq2seq [38] ✓ ✓ ✗ ✗ ✗

TA-seq2seq [5] ✓ ✓ ✓ ✗ ✗

ISA [32] ✓ ✓ ✓ ✓ ✗

TASA (proposed) ✓ ✓ ✓ ✓ ✓

Initially proposed for unsupervised pre-training [4], a large body
of literature on autoencoders spanning over three decades focuses
on unsupervised feature learning [7, 17, 22].

A broad range of autoencoder flavors have been introduced over
the years to handle data of different type and nature. For instance,
one line of autoencoders was adapted to learn representations of
sequential inputs. For this purpose, neural models that capture the
temporal dynamics of sequences, such as Recurrent Neural Net-
works (RNNs), were employed to learn sequence representations.
Typically, in a sequential autoencoding framework an RNN encodes
a set of sequences into fixed-length vectorial representations, fol-
lowed by another RNN that decodes these representations back to
the original sequences. The idea stems from the concept of sequence-
to-sequence learning and the introduction of the seq2seqmodel [38]
for language translation. The initial seq2seq model utilized Long
Short-Term Memory (LSTM) networks to encode English sentences
and reconstruct them into their French translations. Seq2seq au-
toencoders [1, 9, 40], on the other hand, aim at reconstructing the
same input sequences from their own representations to which they
are encoded. Nevertheless, sequential autoencoders learn represen-
tations that preserve the sequential order within sequences assum-
ing constant elapsed times between their constituent elements. To
account for irregular time gaps between consecutive sequence ele-
ments, a Time-Aware LSTM (T-LSTM) autoencoder was proposed
in [5, 34]. Recently, T-LSTM found applications in interpretable rep-
resentation learning for disease progression modeling [3, 41] and
user conversion prediction in prospective advertising [13]. Another
recent study [32] also leveraged the concept of capturing irregular
time gaps by introducing stop features to serve as temporal stamps
in a sequential autoencoding framework. The reconstruction pro-
cess of the framework integrated two classical mechanisms in order
to account for both (1) the global silhouette information that un-
derlies a sequence and (2) the local temporal dependencies among
the sequence constituents. This allowed for learning to differenti-
ate speakers given their speech sequence samples in addition to
recognizing solely the text they utter.

In general, autoencoders have shown to be effective in gener-
ating compact representations for subsequent supervised learn-
ing tasks in a broad range of domains including information re-
trieval [6, 21, 33, 36], natural language processing [2, 10, 11, 24, 26],
computer vision [31, 37], audio signal processing [1, 9], text-to-
speech synthesis [40], multi-task learning [27], network embed-
ding [15], among others. For a more thorough overview of autoen-
coders and their applications, we refer the reader to [14, Ch. 14].

3 TIME-AWARE SEQUENTIAL
AUTOENCODER (TASA)

The proposed model, TASA, is an autoencoder variant that learns
time-preserving representations in an unsupervised manner. The
input to TASA is a sequence of activities {a1, . . . ,aL,aL+1}, along
with their corresponding timestamps {t1, . . . , tL, tL+1}. Note that
the actual input sequence is of variable length L, whereas aL+1 =
aEOS is an end-of-sequence token that allows for handling se-
quences of different lengths. Correspondingly, tL+1 is set to be
equal to the timestamp of the most recent activity aL . TASA first
encodes the entire sequence into a fixed-length vector represen-
tation h that reflects the sequential and temporal dependencies
among the activities. Thereafter, a sequence of activities is decoded
from the learned representation, as similar as possible to the input
sequence. By leveraging this principle, TASA enforces learning of
sequence representations that prioritize informative activity prop-
erties, while preserving the sequential and temporal dependencies
among the activities. The following contains a detailed description
of TASA’s building blocks.

3.1 Activity Embedding
Initially, every unique activity a ∈ V is assigned an embedding v ∈

RD , given that V is a vocabulary containing all distinct activities,
i.e.V = {a(1), . . . ,a(|V |)} such that a(j) , a(k), j , k . Note that two
additional tokens are reserved inV for the start and end-of-sequence
tokens astar t and aEOS , respectively.

The activity embeddings are initialized to random uniform values
and a function д : V → RD is used to map each activity aj to its cor-
responding embedding vj = д(aj), for every j = 1, . . . , L+1. The em-
beddings vj are then organized into a sequence {v1, . . . , vL, vL+1}
in the same order as their corresponding activities in the input
sequence {a1, . . . ,aL,aL+1}.

3.2 Temporal Score Learning
To capture the irregular time intervals between consecutive activi-
ties, an additional feature τj =

tj
tL+1 is created for aj , where tj is the

timestamp of aj . Following the terminology from [32], the resulting
features {τ1, . . . , τL, τL+1} are referred to as stop features. The intu-
ition behind a stop feature suggests that it can act as an activity’s
relative “closeness”, in time, to the end of a sequence. Increasing lin-
early with the activities’ timestamps, the closer an activity occurred
to the latest timestamp in a sequence, the closer its stop feature
value is to 1. In addition to the stop features, each activity aj is

mapped to a pair of latent parameters θ j , µ j ∈ R. Similarly to [3, 13],
θ j serves to model the influence of activities to the sequence embed-
dings. On the other hand, µ j and τj model the influence that activity
occurrence times have on the sequence embeddings. Through the
reconstruction process, the learned embeddings should preserve
these influences through the latent parameters. For this purpose, a
temporal score is defined for each aj as

δj = σ (θ j + µ jτj), (1)

where σ denotes a sigmoid (logistic) activation function. Here, θ j is
intended to measure the initial influence of aj . On the other hand,
µ j acts as the change in the influence based on aj ’s “recency”. The
extent to which the effect of aj changes through time depends on
the magnitude of µ j . However, θ j +µ jτj is passed through a sigmoid
activation function to represent a probability. Hence, for a given θ j ,
large positive and low negative values of µ j will push δj closer to
0 and 1, respectively. As suggested in [13], a sigmoid activation is
proposed for activity-specific modeling of the influence as opposed
to a softmax activation which enforces the influences of all activities
to sum up to 1. This accounts for cases where the same activity
occurred in multiple instances within the same sequence, by putting
more attention to more recent occurrences. Finally, the temporal
scores are used to scale the activity embeddings:

v̂j = δjvj . (2)

3.3 Sequential Encoding
Once the temporally scored activity embeddings are generated,
the sequences of activity embeddings are further encoded intoM-
dimensional representations. To that end, a long short-termmemory
(LSTM) network is utilized. The LSTM network takes the sequence
of temporally scored activity embeddings {v̂1, . . . , v̂L, v̂L+1} and
passes each v̂j through a forget gate fj , an input gate ij , an output
gate oj and a cell Cj :

fj = σ (Wf v̂j + Uf hj−1 + bf), (3)

ij = σ (Wi v̂j + Uihj−1 + bi), (4)
oj = σ (Wo v̂j + Uohj−1 + bo), (5)

Cj = fj ⊙ Cj−1 + ij ⊙ C̃t , (6)
where ⊙ denotes the element-wise product and C̃j is the candidate
cell state at the j-th step defined as

C̃t = tanh(Wc v̂j + Uchj−1 + bc). (7)

The matrices Wf ,Wi ,Wo ∈ RM×D and Uf ,Ui ,Uo ∈ RM×M in
Equations (3)-(5) are transformation matrices, while the vectors
bf , bi , bo ∈ RM represent the corresponding bias terms. Finally,
the hidden state at step j is computed as a function of the output
and cell states:

hj = oj ⊙ tanh(Cj). (8)
The procedure described through Equations (3)-(8) can be also
formulated as a function in the following manner:[

ĥj , Ĉj

]L+1
j=1
= fLSTM

(
{v̂j }L+1j=1 ,

[
hj ,Cj

]L+1
j=1

)
, (9)

where hj is initially generated using an orthogonal initialization,
while Cj is initialized as a mixture of uniform and orthogonal
random values. Note that the hidden state vector calculated at the

last step (L + 1) is taken to summarize the entire input sequence
into a sequence (user) embedding h = hL+1.

3.4 Sequence Reconstruction
Given a learned sequence embedding h, the decoder component
of TASA seeks to reconstruct the input sequence from h. First, the
start token astar t is appended at the beginning of the original
sequence, i.e. {a0 = astar t ,a1, . . . ,aL}. Correspondingly, τ0 = 0 is
taken as the stop feature for a0, resulting in {τ0, τ1, . . . , τL}. In the
decoding, each activity aj is used to predict aj+1 starting from the
start activity, i.e. for j = 0, . . . , L. For this purpose, the activities,
including a0, are mapped into their corresponding embeddings vj
and thereafter multiplied by the temporal scores δj . The resulting
embeddings v̂j are passed to an LSTM network

[
ȟj , Čj

]L
j=0 = fLSTM

(
{v̂j }Lj=0,

[
ĥL+1, ĈL+1

]L
j=0

)
, (10)

in which the initial states are set to the last hidden and cell states[
ĥL+1, ĈL+1

]
learned by the encoder component.

The reconstruction problem is treated as a multi-class classi-
fication problem in which each activity aj+1 (from the original
sequence) is predicted from the decoder outputs ȟj by passing
them to a fully-connected layer

oFC , j+1 =
(
ȟ⊤j WFC + bFC

)
. (11)

The outputs from the fully-connected layer are then passed through
a softmax activation function to calculate the probabilities for each
activity:

P(aj+1 = a(k) |ȟj ;WFC) =
exp (oFC ,k)∑
j exp (oFC , j)

, (12)

where a(k) ∈ V . Note that computing Eq. (12) can be quite expensive
when the number of unique activities |V | is large. In this work, the
exact softmax value P(aj+1 = a(k) |ȟj ;WFC) was calculated for all
unique activities a(k) ∈ V due to the availability of computational
resources. Nevertheless, in case of limited resources or a need for
more efficient model training, we suggest approximating Eq. (12)
by computing it over a subset of sampled activities using candidate
sampling [18].
Parameter Learning. Given a set S = {anj }

Ln ,N
j=1,n=1 of N activity

sequences, a logistic loss ℓn is defined for the n-th sequence as

ℓn = −

Ln∑
j=0

|V |∑
k=1

I (anj+1 = a(k)) log P(anj+1 = a(k) |ȟj ;WFC)+

I (anj+1 , a(k)) log(1 − P(anj+1 = a(k) |ȟj ;WFC)),

(13)

where I is an indicator function. The parameters of TASA are then
learned by minimizing the total loss L =

∑N
n=1 ℓ

n .
For a graphical illustration of TASA’s building blocks (described

above in Sections 3.1-3.4), refer to Figure 1.

ℎ1 ℎ2 ℎ𝐿+1ℎ𝐿

ෘℎ𝐿 ෘℎ𝐿−1 ෘℎ1 ෘℎ0

Initialize

LSTM
decoding layer

Decoder
output (logits)

Activity
probabilities

Reconstructed
user trail

Fully-connected
decoding layer

𝐩𝐿+1 𝐩𝐿 𝐩2 𝐩1

𝐨𝐿+1 𝐨𝐿 𝐨2 𝐨1

𝑎𝐿+1 𝑎𝐿 𝑎2 𝑎1

𝑎2 𝑎2 𝑎|𝑉|−1 𝑎|𝑉|𝑎1 𝑎|𝑉|−2

LSTM
encoding layer

𝐯1𝛿1 𝐯2𝛿2 𝐯𝐿𝛿𝐿 𝐯𝐿+1𝛿𝐿+1

𝜃1 𝜇1𝜏1 𝜃2 + 𝜇2𝜏2 𝜃𝐿 + 𝜇𝐿𝜏𝐿 𝜃𝐿+1 + 𝜇L+1𝜏𝐿+1

𝛿𝐿𝐯𝐿 𝛿𝐿−1𝐯𝐿−1 𝛿1𝐯1 𝛿0𝐯0

User trail

Embedding
layer

(𝑎1, 𝑡1) (𝑎2, 𝑡2) (𝑎𝐿 , 𝑡𝐿) (𝑎𝑒𝑜𝑠 , 𝑡𝑒𝑜𝑠)

𝜃𝑗 𝜇𝑗 𝜏𝑗
Temporal score
embedding layer

𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑

Figure 1: TASA model architecture.

4 DATA
4.1 RecSys 2015 Challenge Data
We conducted purchase prediction experiments on a publicly avail-
able dataset obtained from the RecSys Challenge in 2015. This
dataset contains sequences (sessions) of click events with respec-
tive timestamps from the Yoochoose website. Some sessions ended
with a purchase event (if so, the label was set as positive, otherwise
negative). There are 3, 985, 870 sessions in the training and 442, 167
in the test dataset, out of which 4, 050, 782 are labeled as negative,
and 377, 255 are labeled as positive. Trails were pre-processed such
that the maximum sequence length was set to 100 (the last 100
events were kept, otherwise, the trails were padded). The trails con-
taining less than 3 activities were filtered out and only the activities
having more than 5 occurrences in the whole dataset were kept,
which resulted in 52, 739 unique activities in the final vocabulary.

4.2 User Activity Trails from Verizon Media
We also conducted experiments using user activity trails data from
Verizon Media (VM). This includes activities chronologically col-
lected for users, derived from heterogeneous sources, e.g., Yahoo
Search, commercial email receipts, reading news and other content
on publishers’ webpages associated with Verizon Media such as the
Yahoo homepage, Yahoo Finance, Sports and News, advertising data
(e.g., ad impressions and clicks), etc. A representation of an activity
comprises of activity ID, timestamp, its type (e.g., search, invoice,
reservation, content view, order confirmation, parcel delivery), and
a raw description of the activity (e.g., the exact search query for
search activities). All personally identifiable information (PII) was
stripped upstream from the datasets used in this study.

Millions of activity trails were collected (i.e. user identifiers; note
that a unique user id does not necessarily map to a single user). All

unique activities performed by the users were sorted by frequency
and the 200,000 most frequent were selected, i.e. |V | = 200, 000.
For the purposes of supervised evaluation, conversions (labels) were
collected for over a one-month period for 3 different advertisers. A
trail is labeled as positive if its corresponding user converted for
a specific advertiser soon after the last event in the trail. For each
advertiser, the user trails were divided into training, validation and
test sets. Note that the user trails were sampled from a larger pool
of user trails such that they correspond to the same set of users for
all three advertisers. After eligible users and events were selected,
negative downsampling was performed to maintain roughly 5% of
the positives for all advertisers.

5 EXPERIMENTS
This section describes the baseline models, the experimental de-
sign and defines the evaluation metrics used in the experiments.
Thereafter, the experimental results are presented and discussed.

5.1 Experimental Setup
5.1.1 Baselines. The baseline models considered in the conducted
experiments are described as follows:
• Fully-Connected Autoencoder (AE): A conventional autoencoder
that uses fully-connected layers for encoding and decoding.

• Seq2seq Autoencoder (seq2seq) [38]: A sequential autoencoder
in which an LSTM encodes a set of sequences into fixed-length
vector representations, followed by another LSTM aiming to re-
constrcut the original sequences from the vector representations.

• Time-Aware Seq2seq (TA-seq2seq) [5]: A Time-Aware LSTM (T-
LSTM) autoencoder that accounts for irregular time gaps between
consecutive sequence elements.

• Integrated Sequence Autoencoder (ISA) [32]: An autoencoding
framework that integrates two classical mechanisms to account
for both (1) the global silhouette information that underlies a
sequence and (2) the local temporal dependencies, which allows
for comparing entire sequences, not only their constituents. ISA
also captures irregular time gaps by introducing stop features to
serve as temporal stamps in the sequence reconstruction process.

∗ Logistic Regression (LR): A logistic regression model that learns
to predict a binary target variable by minimizing the logistic loss.

∗ Attention-based RNN (attRNN) [42]: An attention-based recurrent
neural network designed specifically for conversion prediction
from user activity trails.

∗ eXtreme Gradient Boosting (XGBoost) [8]: A scalable, distributed
gradient tree boosting algorithm.

The summaries of the supervised baselines are marked with “∗”.

5.1.2 Evaluation metrics. The considered autoencoder approaches
learn in an unsupervised manner, yet they are applied to multiple
supervised tasks. Hence, both unsupervised and supervised metrics
were utilized to assess the performance of each approach.

Unsupervised metrics. The unsupervised metrics used in the ex-
periments are summarized as follows:
• Reconstruction Accuracy measures the fraction of activities in a
reconstructed (output) sequence {ã1, . . . , ãL̃} that appear on the
same positions as in the original (input) sequence {a1, . . . ,aL}:
R = 1

L
∑L
j=1 I (aj = ãj).

• ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [25]
is an n-gram based measure of the quality of a candidate (out-
put) summary with respect to one or multiple reference (input)
summaries. Although initially proposed for text summarization,
ROUGE is used in this work for measuring the n-gram recall be-
tween a single input sequence of activities and its corresponding
reconstructed (output) sequence, i.e.

ROUGEn =
1
2
∑L−n+1
j=1

∑L̃−n+1
k=1 I ({aj , ...,aj+n−1 }={ãk , ...,ãk+n−1 })

L−n+1 .

Note that all three ROUGE1, ROUGE2 and ROUGEw are mea-
sured, wherew denotes the Longest Common Subsequence (LCS)
in the input sequence.

• BLEU (BiLingual Evaluation Understudy) [30]: Solely measuring
recall over the n-grams in an input sequence favors long output
sequences. Therefore, BLEU evaluates the quality of the input
sequence reconstruction based on the n-gram precision (instead
of the n-gram recall) between the input and output sequences,
defined as

precisionn =
1
2
∑L̃−n+1
k=1

∑L−n+1
j=1 I ({ãk , ...,ãk+n−1 }={aj , ...,aj+n−1 })

L̃−n+1
.

Finally, the BLEU score is calculated by combining the average
logarithms of the precision scores with exceeded length penal-
ization (for more details, the reader is referred to [30]).

Supervised metrics. The supervised tasks were formulated as
classification problems, hence the common performance indicator
of area under the ROC curve (AUC) was used for evaluation based
on the label probability scores estimated by the models.

Reproducibility notes. The activity and user embedding di-
mensions were set to 100. The activity embeddings were initial-
ized to random uniform numbers in [−0.05, 0.05], while for the
approaches utilizing LSTM the sequential embeddings were initial-
ized using an orthogonal initialization with a multiplicative factor
of 1. The proposed model, along with the baselines, were trained
for 10 epochs using the Adam [20] optimizer with a learning rate of
0.001. The gradient updates on the proprietary and public datasets
were performed using batches of size 32 and 64, respectively. All ap-
proaches were implemented in Python 3.6 using TensorFlow 1.13.1
and run on a distributed TensorFlowOnSpark1 infrastructure. Each
approach was run on 100 Spark executors, while its parameters
were distributed among 5 executors.

5.2 Results
We conducted two sets of experiments, focusing on (1) the recon-
struction capability of the considered approaches, and (2) assessing
the embedding quality with respect to several supervised tasks.

Sequence reconstruction capability. User embeddings were
learned from the user trails available in both the proprietary and
public datasets, using each of the unsupervised approaches summa-
rized in Section 5.1.1. Upon training, the sequence reconstruction
capability of the approaches was evaluated on a separate hold-out
test set using the unsupervised measures defined in Section 5.1.2.

First, we evaluated the proposed TASA against the baselines on
the sequence reconstruction task, using the proprietary VM activity
data and reported the results in Table 2. Table 2 suggests that TASA
achieves greater performance compared to the other approaches,

1https://github.com/yahoo/TensorflowOnSpark, accessed June 2020.

Table 2: Sequence reconstruction performance on the VM
proprietary dataset.

Rec. BLEUn ROUGEn
Model Acc. n = 1 n = 2 n = 1 n = 2 n = w

AE 0.0451 0.0451 0.0000 0.0115 0.0000 0.0451
seq2seq 0.3407 0.4734 0.2209 0.4389 0.1825 0.4192
TA-seq2seq 0.3731 0.5018 0.2524 0.4725 0.2159 0.4478
ISA 0.2839 0.4102 0.1674 0.3796 0.1336 0.3620
TASA 0.3761 0.5103 0.2538 0.4846 0.2169 0.4511

Table 3: Sequence reconstruction performance on the (pub-
lic) RecSys 2015 challenge dataset.

Rec. BLEUn ROUGEn
Model Acc. n = 1 n = 2 n = 1 n = 2 n = w

AE 0.0136 0.0136 0.0085 0.0122 0.0082 0.0136
seq2seq 0.1235 0.2396 0.0709 0.2551 0.0742 0.2254
TA-seq2seq 0.1725 0.2664 0.0936 0.2807 0.0965 0.2527
ISA 0.1979 0.2535 0.0927 0.2851 0.0991 0.2464
TASA 0.5244 0.5500 0.3952 0.5691 0.4012 0.5441

across all sequence reconstruction measures. Further, it shows that
approaches which take into consideration the temporal aspect of
the data, such as TA-seq2seq and TASA, do better at capturing
the information needed for more accurate sequence reconstruction
than the rest of the approaches. Nonetheless, seq2seq greatly out-
performs AE, indicating that the sequential information modeling
performed by LSTM autoencoders seems to be an important basis
for capturing the sequential nature of the user trails.

Reconstruction evaluation was also performed on the public
dataset. Table 3 summarizes the results. The performances of AE,
seq2seq, TA-seq2seq and TASA on this dataset seem to be some-
what consistent with their performances on the proprietary dataset.
Once again, seq2seq outperforms AE and the time-aware variants
manifest improvements over the ones that do not preserve time.
ISA specifically exhibits better performance relative to the other ap-
proaches, being the second-best performing model. TASA, however,
consistently outperforms the other alternatives across all evaluation
measures, here showing even larger performance improvements
than those obtained on the proprietary data.

Supervised predictive tasks. The learned vector representa-
tions were further tested on supervised predictive tasks. For the
proprietary datasets, a baseline approach was used to build pre-
dictive models using users’ demographic data and the lift in AUC
(expressed in percentages) was computed for the rest of the models
with respect to this baseline. The user embeddings learned from the
unsupervised models were appended to these demographic data
and an LRmodel was learned on the resulting concatenated features.
In addition, two more supervised approaches were compared: an LR
learned on 1-hot encoded activity features and an attRNN learned
on user sequences, both concatenated with user demographics. The
lifts in AUC obtained on the proprietary datasets are given in Ta-
ble 4. It should be noted that the lifts are expressed in percentages

https://github.com/yahoo/TensorflowOnSpark

Table 4: All LRmodels from the left section of the table are trained on (1) the user demographic features concatenated with (2)
the user embeddings generated by the corresponding unsupervised embedding model given in the parentheses of LR(·). The
AUC lifts in the left section are calculated relatively to an LR model trained solely on the user demographic features. As for
the right section of the table, LR 1-hot is an LR model trained on one-hot encoded features (extracted from the user trails),
while attRNN is trained on the original user trails, concatenated to the TASA-generated user embeddings in both cases. The
corresponding lifts in AUC introduced by the former and the latter are calculated relatively to an LR model trained solely on
the one-hot encoded features and an attRNN trained solely on the original user trails, respectively.

Supervised Task LR(AE) LR(seq2seq) LR(TA-seq2seq) LR(ISA) LR(TASA) LR 1-hot attRNN
Advertiser A 27.13% 29.68% 29.73% 29.96% 30.44% 22.78% 30.46%
Advertiser B 11.79% 15.99% 15.91% 18.24% 20.34% 10.65% 20.18%
Advertiser C -18.88% 18.63% 16.07% 16.44% 20.37% 7.66% 20.49%

Table 5: Predictive performance in terms of AUC on the (public) RecSys 2015 challenge dataset. For more details on themodels
presented in the left and right sections of the table, refer to the caption of Table 4.

Supervised Task LR(AE) LR(seq2seq) LR(TA-seq2seq) LR(ISA) LR(TASA) LR 1-hot attRNN
RecSys 2015 Challenge 0.5555 0.6022 0.7523 0.7420 0.7563 0.7277 0.7591

since any disclosure of the AUC values is not allowed according to
internal corporate policies. Nevertheless, despite the challenging
real-world nature of the predictive tasks on the proprietary data,
it was observed that the AUC values obtained by all models are
legitimate in the sense that they are substantially greater than 0.5.

It is clear that using only the demographic data is not sufficient.
LR trained on the one-hot encoded user activities improves this
performance. Nevertheless, once the user embeddings are concate-
nated to the demographic features, the improvements in AUC are
evident. In particular, the proposed TASA achieves an improve-
ment of > 25% in AUC on Advertiser A, > 10% on Advertiser B, and
> 15% on Advertiser C. This indicates that, although LR is trained
in a supervised manner, when trained on unsupervised user em-
beddings it still attains greater predictive performance. This is due
to the sequential information within the user trails that is being
captured by the sequential autoencoder variants, but not by LR
trained on a simple one-hot transformation of the user activities.

However, LR achieves its highest performance when trained on
TASA’s user embeddings, rather than on the embeddings produced
by any other autoencoder variant. It even achieves comparable
performance to the supervised attRNN model. This is of consid-
erable importance since TASA learned the user embeddings not
being aware of the prediction target as opposed to attRNN that was
tailored for each task separately. In addition, attRNN requires to
be retrained for each task which consumes a significant amount
of time. Therefore, TASA has a great advantage since it can be
trained offline once and readily applied across multiple prediction
tasks, allowing for subsequently leveraging low-latency models
(to accommodate serving time) which, if needed, can be efficiently
retrained on TASA’s low-dimensional embeddings.

The approaches were evaluated on the public RecSys 2015 dataset
as well. Consistent with the previous observations, LR(TASA) con-
vincingly outperformed the competitive autoencoder approaches,
while being almost as good as attRNN. In fact, all models that ac-
count for sequential and temporal data aspects outperformed the

LR variant trained on the one-hot encoded sequences (see Table 5).
TASA learned embeddings that again resulted in the model with
the highest AUC among the LR models trained on user embeddings.
This indicates that TASA’s user embeddings appear to be more in-
formative than the ones generated by the alternative autoencoders.

6 SERVICE PIPELINE
In Section 5, it has been observed that the proposed TASA outper-
forms the other unsupervised embedding baselines on both the
sequence reconstruction task and the subsequent supervised tasks.
Therefore, TASA is used within a service system designed to pro-
vide time-aware (user) embeddings as a service. Generally speaking,
the service takes a collection of sequences as an input and periodi-
cally generates time-aware embeddings of the sequences and their
constituent elements. Although the service is clearly applicable to
any type of sequence data, in this work it is described from the
perspective of embedding sequences of user activities, i.e. user trails.
The stages of the service system pipeline are described as follows:

• Stage 1: Generation of Sequences (User Trails). The activi-
ties that users performed are first queried from multiple hetero-
geneous data sources. In our case, these include Yahoo Search
queries, commercial email receipts, reading news and other con-
tent on publishers’ webpages associated with Verizon Media such
as the Yahoo homepage, Yahoo Finance, Sports and News, adver-
tising data (e.g., ad impressions and clicks), etc. After stripping all
personally identifiable information (PII) from the raw description
of each activity (e.g., the exact search query for search activities),
the frequency of each unique activity is calculated. An index is
then assigned to each activity among the top-K most frequent
activities (we set K = 200, 000) and the mappings between the
activities’ descriptions and their indices are organized in a vo-
cabulary V .

• Stage 2: Model Training. The proposed TASA model takes (1)
the extracted user trails, (2) the timestamps of their constituent
activities and (3) the activity vocabularyV as an input, and learns

anM-dimensional time-preserving embedding for each user trail
following the procedure described in Section 3. The resulting
M-dimensional (we setM = 100) continuous vectors are stored
in a centralized database. Similarly, the learned parameters of
TASA are also stored in a separate database for further use.

• Stage 3: Embedding Incoming Activities/Users. Uponmodel
training, the learned TASA parameters can be fetched and used
to embed incoming activities or entire user trails. Note that if
an incoming activity turns out to be one of the trending activi-
ties, meaning that it was performed by a large number of users
and passes the frequency threshold, it will be included in V and
considered for the next scheduled model training. However, the
incoming activity may not be present in the vocabulary V . In
this case, the new activity is not immediately added to V , but
it is included in V the next time V is being updated. Similarly,
incoming users are embedded by first embedding the activities
from their trails that are present in V , while considering the cur-
rently unknown activities for inclusion in the next vocabulary
update cycle. Consequently, the vocabulary is updated period-
ically (e.g., once a week), while the trails are typically updated
more frequently (on a daily basis, for instance).

It should be stressed that the service is general enough to be utilized
for different types of downstream tasks in the realms of advertis-
ing, user profiling, or recommendation. These tasks may include
click/conversion prediction, user segmentation, lookalike modeling
(e.g., retrieving the top-10 most similar users to a given user based
on embedding similarity; or leveraging the user embeddings to
support other autoencoder approaches for lookalike modeling [12]),
recommendation of news, products or ads, among others. This
allows for individual teams to carry out their downstream tasks
without being burdened with efforts around understanding the data,
crafting features, etc.

A bird’s-eye view of the entire service pipeline, encompassing
the aforedescribed stages, is presented in Figure 2.

6.1 Pipeline Evaluation
The Embeddings-as-a-Service pipeline is currently deployed as an in-
ternal tool which several teams utilize as a source of additional user
features, mainly for offline experimentation. In Table 6 we present
the results from the offline experiments for four sets of audiences
on a conversion prediction task. The results are expressed in terms
of percentage AUC lifts as the disclosure of the AUC values is not
allowed according to internal corporate policies. However, we have
verified that, despite the challenging nature of predicting conver-
sions for multiple real-world audiences, the original AUC values are
legitimate in the sense that they are substantially greater than 0.5.
The relative improvements in AUC were obtained by comparing a
supervised model that utilizes the TASA-generated embeddings in
addition to the current production features, to a model built using
only the current production features. In both cases, XGBoost (a gra-
dient boosting algorithm summarized in Section 5.1.1) is used for
supervised learning. Therefore, the percentage improvements for
all four audiences are a result of the TASA-generated user embed-
dings being utilized along with the production features. It should
be stressed that the production system is a very strong baseline as
it utilizes a set of features that have been refined over many years

Table 6: AUC lifts introduced by the Embedding-as-a-Service
pipeline on four in-house conversion prediction tasks.

Task AUC Lift
Audience 1 0.92%
Audience 2 0.09%
Audience 3 0.95%
Audience 4 0.40%

and are already achieving high predictive performance. Consider-
ing that the performance evaluation is carried out on audiences
that consist of over a billion users each, even a lift of about 0.5%
is substantial and can make a difference given the high volume of
predictions the model is expected to make.

7 CONCLUSION
Motivated by the goal of reducing the redundancy in feature en-
gineering effort for multiple user-centered tasks, we explored the
capabilities of contemporary unsupervised sequence embedding
methods. Moreover, we proposed TASA, a sequential autoencoder
that extends the modeling capacity of conventional sequence em-
bedding approaches to allow for modeling the influence of tempo-
ral information within user sequences. The experimental evalua-
tion on both proprietary and public data demonstrated that TASA
outperforms alternative autoencoder variants when it comes to
sequence reconstruction, and leads to improved predictive perfor-
mance when used in supervised tasks. Further, we presented a
service pipeline that leverages TASA to generate time-aware user
embeddings. When used along with the current production features,
the pipeline-generated embeddings resulted in improved conver-
sion prediction performance on four different audiences. Finally,
we expect the pipeline to serve as a powerful tool for supporting
various tasks vital for digital media company businesses.

ACKNOWLEDGMENTS
Martin Pavlovski and Zoran Obradovic’s research was supported in
part by the NSF grant IIS-8142183 and by Yahoo! Research “Faculty
Research and Engagement Program”. We would also like to thank
the engineering teams within Verizon Media that helped develop
the data and evaluation pipelines.

REFERENCES
[1] Shahin Amiriparian, Michael Freitag, Nicholas Cummins, and Björn Schuller. 2017.

Sequence to sequence autoencoders for unsupervised representation learning
from audio. In Proc. of the DCASE 2017 Workshop.

[2] Sarath Chandar AP, Stanislas Lauly, Hugo Larochelle, Mitesh Khapra, Balaraman
Ravindran, Vikas C Raykar, and Amrita Saha. 2014. An autoencoder approach
to learning bilingual word representations. In Advances in Neural Information
Processing Systems. 1853–1861.

[3] Tian Bai, Shanshan Zhang, Brian L Egleston, and Slobodan Vucetic. 2018. Inter-
pretable representation learning for healthcare via capturing disease progression
through time. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, 43–51.

[4] Dana H Ballard. 1987. Modular Learning in Neural Networks.. In AAAI. 279–284.
[5] Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou. 2017.

Patient subtyping via time-aware LSTM networks. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining. ACM,
65–74.

[6] Sean Billings. 2018. Gradient Augmented Information Retrieval with Autoen-
coders and Semantic Hashing. arXiv preprint arXiv:1803.04494 (2018).

#2 Embeddings as a Service
Intern: Martin Pavlovski
Mentors: Ivan Stojkovic, Jelena Gligorijevic
Manager: Narayan Bhamidipati

sequence
generation

user trail

output

user
embedding

Da
ta

 S
ou

rc
es

Encoded
representation

new sequence of activities Apply
TASA

Centralized pool
of embeddings

Model weights

user embedding

Click/Conversion
Prediction

User segments/
lookalike modeling

News/product/ad
recommendation

TASA
Training

input

Figure 2: A bird’s-eye view of the Embeddings-as-a-Service pipeline.

[7] Hervé Bourlard and Yves Kamp. 1988. Auto-association bymultilayer perceptrons
and singular value decomposition. Biological cybernetics 59, 4-5 (1988), 291–294.

[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 785–794.

[9] Yu-An Chung, Chao-Chung Wu, Chia-Hao Shen, Hung-Yi Lee, and Lin-Shan Lee.
2016. Audio word2vec: Unsupervised learning of audio segment representations
using sequence-to-sequence autoencoder. arXiv preprint arXiv:1603.00982 (2016).

[10] Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. In
Advances in neural information processing systems. 3079–3087.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Khoa D Doan, Pranjul Yadav, and Chandan K Reddy. 2019. Adversarial Factor-
ization Autoencoder for Look-alike Modeling. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. 2803–2812.

[13] Djordje Gligorijevic, Jelena Gligorijevic, and Aaron Flores. 2019. Time-Aware
Prospective Modeling of Users for Online Display Advertising. AdKDD 2019 work-
shop at the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2019).

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[15] Zhicheng He, Jie Liu, Na Li, and Yalou Huang. 2019. Learning Network-to-
Network Model for Content-rich Network Embedding. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 1037–1045.

[16] Geoffrey E Hinton and Sam T Roweis. 2003. Stochastic neighbor embedding. In
Advances in neural information processing systems. 857–864.

[17] Geoffrey E Hinton and Richard S Zemel. 1994. Autoencoders, minimum de-
scription length and Helmholtz free energy. In Advances in neural information
processing systems. 3–10.

[18] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2014.
On using very large target vocabulary for neural machine translation. arXiv
preprint arXiv:1412.2007 (2014).

[19] Ian Jolliffe. 2011. Principal component analysis. Springer.
[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[21] Alex Krizhevsky and Geoffrey E Hinton. 2011. Using very deep autoencoders for

content-based image retrieval.. In ESANN, Vol. 1. 2.
[22] Yann Le Cun. 1986. Modèles connexionnistes de l’apprentissage. These de Doctorat.

Universite Paris (1986).
[23] Daniel D Lee and H Sebastian Seung. 1999. Learning the parts of objects by

non-negative matrix factorization. Nature 401, 6755 (1999), 788.
[24] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015. A hierarchical neural

autoencoder for paragraphs and documents. arXiv preprint arXiv:1506.01057
(2015).

[25] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[26] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou. 2014.
Autoencoder for words. Neurocomputing 139 (2014), 84–96.

[27] Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.
2015. Multi-task sequence to sequence learning. arXiv preprint arXiv:1511.06114
(2015).

[28] GeoffreyMcLachlan. 2004. Discriminant analysis and statistical pattern recognition.
Vol. 544. John Wiley & Sons.

[29] Al Mead. 1992. Review of the development of multidimensional scaling methods.
Journal of the Royal Statistical Society: Series D (The Statistician) 41, 1 (1992),
27–39.

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[31] Viorica Patraucean, Ankur Handa, and Roberto Cipolla. 2015. Spatio-temporal
video autoencoder with differentiable memory. arXiv preprint arXiv:1511.06309
(2015).

[32] Wenjie Pei and David MJ Tax. 2018. Unsupervised Learning of Sequence Repre-
sentations by Autoencoders. arXiv preprint arXiv:1804.00946 (2018).

[33] Jonas Pfeiffer, Samuel Broscheit, Rainer Gemulla, and Mathias Göschl. 2018. A
neural autoencoder approach for document ranking and query refinement in
pharmacogenomic information retrieval. Association for Computational Linguis-
tics.

[34] Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. 2016. Deepcare: A
deep dynamic memory model for predictive medicine. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 30–41.

[35] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. science 290, 5500 (2000), 2323–2326.

[36] Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Semantic hashing. International
Journal of Approximate Reasoning 50, 7 (2009), 969–978.

[37] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. 2015. Unsuper-
vised learning of video representations using lstms. In International conference
on machine learning. 843–852.

[38] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[39] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geometric
framework for nonlinear dimensionality reduction. science 290, 5500 (2000), 2319–
2323.

[40] Vincent Wan, Yannis Agiomyrgiannakis, Hanna Silen, and Jakub Vit. 2017.
Google’s Next-Generation Real-Time Unit-Selection Synthesizer Using Sequence-
to-Sequence LSTM-Based Autoencoders.. In INTERSPEECH. 1143–1147.

[41] Yuan Zhang, Xi Yang, Julie Ivy, and Min Chi. 2019. ATTAIN: Attention-based
Time-Aware LSTM Networks for Disease Progression Modeling. IJCAI.

[42] Yichao Zhou, Shaunak Mishra, Jelena Gligorijevic, Tarun Bhatia, and Narayan
Bhamidipati. 2019. Understanding consumer journey using attention based
recurrent neural networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 3102–3111.

	Abstract
	1 Introduction
	2 Related work
	3 Time-Aware Sequential Autoencoder (TASA)
	3.1 Activity Embedding
	3.2 Temporal Score Learning
	3.3 Sequential Encoding
	3.4 Sequence Reconstruction

	4 Data
	4.1 RecSys 2015 Challenge Data
	4.2 User Activity Trails from Verizon Media

	5 Experiments
	5.1 Experimental Setup
	5.2 Results

	6 Service Pipeline
	6.1 Pipeline Evaluation

	7 Conclusion
	Acknowledgments
	References

