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ABSTRACT

Objective: Clinical trials, prospective research studies on human participants carried out by a distributed team

of clinical investigators, play a crucial role in the development of new treatments in health care. This is a com-

plex and expensive process where investigators aim to enroll volunteers with predetermined characteristics,

administer treatment(s), and collect safety and efficacy data. Therefore, choosing top-enrolling investigators is

essential for efficient clinical trial execution and is 1 of the primary drivers of drug development cost.

Materials and Methods: To facilitate clinical trials optimization, we propose DeepMatch (DM), a novel approach

that builds on top of advances in deep learning. DM is designed to learn from both investigator and trial-related

heterogeneous data sources and rank investigators based on their expected enrollment performance on new

clinical trials.

Results: Large-scale evaluation conducted on 2618 studies provides evidence that the proposed ranking-based

framework improves the current state-of-the-art by up to 19% on ranking investigators and up to 10% on detect-

ing top/bottom performers when recruiting investigators for new clinical trials.

Discussion: The extensive experimental section suggests that DM can provide substantial improvement over

current industry standards in several regards: (1) the enrollment potential of the investigator list, (2) the time it

takes to generate the list, and (3) data-informed decisions about new investigators.

Conclusion: Due to the great significance of the problem at hand, related research efforts are set to shift the par-

adigm of how investigators are chosen for clinical trials, thereby optimizing and automating them and reducing

the cost of new therapies.
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INTRODUCTION

Clinical trials constitute a multi-billion–dollar industry aimed to pro-

vide an appropriate environment for successful evaluation of drug ef-

fectiveness in large patient populations, ultimately resulting in well-

tested cures for diseases.1 A clinical trial is carried out by a large and

distributed team of investigators (often physicians) responsible for en-

suring that the trial is conducted according to certain regulations.

Investigators are responsible for enrolling often hard-to-recruit volun-

teers with predetermined characteristics, administering the treat-

ment(s), and collecting data on the subjects’ health, safety, and

treatment efficacy. Enrolling patients for clinical trials can take years,1

so the success of clinical trials thus heavily depends on choosing top-

enrolling investigators; therefore, this is 1 of the primary drivers of

drug development cost and delays in health delivery.2,3 Site selection,

the process in which investigators are chosen to participate in a clini-

cal trial, is 1 of the primary tasks of contract research organizations

(CROs). The objective of our study is to optimize this process by de-
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veloping an effective data science tool for ranking investigators by

their expected performance, as even a minor improvement in site se-

lection accuracy is worth tens of millions of dollars4 as well as weeks

or months until a drug can be released on the market.

Investigators for new clinical trials are traditionally selected

manually by searching through available in-house and public data-

bases from various sources.5 This selection process is very tedious

and fallible due to the infeasibility of searching through every possi-

ble record manually. Recruiters thus resort to maintaining short lists

of preferred investigators, whereas investigators who wish to be en-

rolled in future studies need to reach out to recruiters in addition to

being registered in public databases.5

CROs have a strong interest in the development of automated

systems for selecting investigators for new clinical trials primar-

ily because such systems would shorten the enrollment period

which they oversee, and a delay of a single day in bringing new

drugs to the market equates to between a $1 million and $5 mil-

lion loss4 and potentially months of lost health delivery opportu-

nities. As even the most recent advances in enrollment strategies

involve infeasible manual selection,3 the objective of novel sys-

tems is to automatically learn from available databases, thereby

shifting the core of how selection of investigators has been histor-

ically carried out.

The databases generated by these organizations have accumulated

vast information over the past several decades covering up to 95% of

the medical claims data in the United States as well as enrollment infor-

mation from thousands of clinical trials. Such sources of data provide a

massive opportunity for novel data-driven approaches to give rise to au-

tomated site selection. Claims data, as 1 source of information in this

work, were successfully used to address several high-impact health care

tasks,6,7 especially through deep learning models.8,9

An additional challenge to clinical trial planning is the nuanced na-

ture of clinical trials: no 2 studies are alike, and studies are very difficult

to parameterize. Understanding the nuances by learning from free-text

data that describe existing medical processes has been a long-

standing challenge of research communities, as there are no clear

standard methods or tools for analyzing medical text data yet.10

Several approaches including a symbolic rule-based approach

were proposed in the past for predicting cancer stages from free-

text pathology reports.11,12 Such models, however, require hand-

crafting features, which is long and tedious work, and often re-

quire to be revisited to further improve the obtained features.

Notable success was achieved with the bi-RNN algorithm13 used

for detection of medical events based on textual features from

medical records.14 Another information-rich source in medical

and health care applications are electronic health records (EHRs)

that contain data about the patients’ diagnoses, procedures, and

medications. Learning distributed representations of medical con-

cepts from EHRs was recently proposed in Gligorijevic et al15 and

Choi et al.16 The goal of these studies was to evaluate the quality

of such representations by discovering disease associations.15

Furthermore, it has been recently shown that deep architectures

obtain cutting-edge results on very sensitive medical tasks. For in-

stance, Gligorijevic et al. proposed a deep learning model that out-

performed a hospital’s triage staff at predicting triage resource

allocation in emergency departments.9

Finally, since many predictive problems can be formulated as

matching problems, deep learning models that perform matching ex-

plicitly were developed. For matching of 2 items, siamese network

architectures were proposed.17 More recently, such architectures

were further advanced.18–20

Motivated by these advances, we propose DeepMatch (DM), a

novel deep learning model designed specifically to rank investiga-

tors for clinical trials through pointwise regression on their

estimated enrollment. DM learns deep representations of

(1) investigators given their specialty indications and patients’

history and (2) clinical trials given their official description, pri-

mary indication (PI) and primary therapeutic area (PTA).

These 2 separately learned representations are then matched to

obtain a joint representation. This was later used to predict the

investigators’ enrollment scores which, in this study, are the z-nor-

malized counts of patients enrolled by each investigator for a certain

clinical trial. Therefore, DM is

• capable of capturing complex relations between investigators

and trials through a dedicated matching layer incorporated

within its architecture;
• able to rank investigators for a specific trial from multiple par-

tially observed data sources;
• applicable to investigators with no previous experience in enroll-

ing patients in clinical trials, as well as to investigators with

whom the company has an existing relationship.

An extensive experimental evaluation was conducted providing ev-

idence that the proposed framework outperforms the current industry

standard, as well as other deep and shallow learning alternatives, on

the following 2 tasks: (1) ranking investigators for new clinical trials,

and (2) detecting bottom 30% and top 30% performing investigators.

METHODS AND MATERIALS

Site selection for clinical trials
This study’s aim is to rank investigators for site selection in order to

maximize the number of patients enrolled in clinical trials. More pre-

cisely, for an upcoming study, the objective is to determine a list of top-

enrolling investigators based on the historical enrollment performance

of all investigators on past studies. This requires a system design that

(1) involves collection of data relevant to the problem, (2) uses these

data to model the investigators’ enrollment performance based on past

trial records, and (3) has the ability to make reliable predictions of

investigators’ enrollment scores for future studies. Figure 1 shows how

the data for investigators, including self-reported specialty and patient

history data, can be matched to clinical trials data (detailed descriptions

of a trial’s purpose, treatment, and desired population for treatment

testing) through reports containing past investigators’ performance.

Such data contain rich information that can be used by the CROs to

rank investigators for upcoming clinical trials according to their perfor-

mance, thus facilitating better clinical research overall.

Data

The data used in this study contain information related to both

investigators and studies collected over the past 20 years. The fol-

lowing provides a brief description of data collected and aggregated

from several heterogeneous data sources:

• Investigator performance data. A proprietary data set collected

by the CRO that bridges investigators with their history of per-

formed clinical studies. All major biopharma companies and

CROs maintain similar proprietary data sets. Therefore, this

data set contains information on both investigators and the stud-

ies they participated in. The former relates to investigators’ areas

of specialty, while the latter holds a textual format and includes
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information about a study’s primary indication and therapeutic

area. In addition, for each investigator, the number of patients

that he or she enrolled to each of their past studies is also pro-

vided. Consequently, since each investigator–study pair has an

enrollment score, if a record of a given investigator is not present

in this file, such an investigator has no enrollment history (ie, has

never participated in a clinical study).
• EHR data. An integrated electronic health record (EHR) data-

base of patients’ medical claims and prescription history that

covers 65% of all physician claims and 92% of all prescription

claims in the US. These records include information about

patients’ visits over time in terms of the diseases they were diag-

nosed with (up to 15 per visit), procedures they underwent (up to

15 per visit), and the medications that were prescribed by investi-

gators (up to 5 per visit).
• Public study data. Detailed study-related free-form text data

crawled from clinicaltrials.gov—the largest registry of clinical

studies throughout the world.

Upon collection, the data from the described sources were inte-

grated into 2 separate views:

• Investigator data view. To create this view, investigators were re-

trieved from the investigator performance data. Thereafter, each

investigator was represented by a vector of most frequent codes

of diagnosed diseases, conducted procedures, and prescribed

medications during all visits to the corresponding investigator

stemming from the EHR data source.
• Study data view. Each record in this view includes the primary in-

dication and therapeutic area of a single study stemming from

the investigator performance data and further textual description

of the study obtained from clinicaltrials.gov.

For a complete system overview, refer to Figure 2.

Proposed approach DeepMatch
The architecture of the proposed DM model is illustrated in Figure 3.

The following text describes the building blocks of DM, including

all hyperparameters, in detail.

Building blocks

Medical concepts embedding layer. From the EHR data we chose

the most frequently diagnosed, procedures, and medications

prescribed by each investigator, resulting in an input of length

l
1ð Þ

i ¼ 130. In particular; l
1ð Þ

i thresholds from the most frequent 50

diagnoses, 50 procedures, and 30 prescriptions for each investigator,

where threshold values are chosen based on basic descriptive statis-

tics of medical concept codes across all investigators. An embedding

lookup layer is built to learn distributed representations of medical

concepts (having a dimensionality of dm ¼ 200), after which 2 fully

connected (FC) layers with ReLU nonlinearities are used to learn

higher-order interactions between these embeddings, thus capturing

complex relations between diseases, procedures, and medications.

The final representation of this data source has dimensionality

l
1ð Þ

i � dp, where dp ¼ 50 is the dimension of a joint representation

in the same space with all input data components.

Medical and trial terms embedding layer. Investigators’ specialties,

public trials text, and trials PIs/PTAs have a common vocabulary of

medical terms. Thus, the inputs for the investigators’ specialties

(l
2ð Þ

i ¼ 10), trials PIs/PTAs (l
2ð Þ

s ¼ 10), and public trials text

(l
1ð Þ

s ¼ 100) were embedded using a medical term embedding layer

with a dimensionality of dw ¼ 300. The investigators’ specialties and

the trials PIs/PTAs are passed through 2 fully connected layers, re-

spectively, building dense representation vectors of medical term

interactions, each of size 1� dp. As public trials text contains

multiple elements concatenated into a single document, it is worth-

while to learn relations of terms in different segments. Thus, we pass

the obtained representation of public trials text into a bi-long short-

term memory13 layer such that the model can learn complex relations

between terms (rather than single directional relations). The final rep-

resentation of the public trial data become (l
1ð Þ

s �dpÞ-dimensional.

Investigators and clinical trials matching tensor. The investigator–

trial matching is obtained in this layer. Using the learned higher-

order representations of investigators Hi of shape (1þ l
1ð Þ

i Þ�dp and

clinical trials Hs of shape (1þ l
1ð Þ

s Þ�dp, a tensor is built for their

implicit matching. A matching tensor His of shape ð1þ l
1ð Þ

i Þ
� 1þ l

1ð Þ
s

� �
� dp is created in the following manner:

His m; n; :ð Þ ¼ Hi m; :ð Þ � Hsðn; :Þ;

where m; n 2 N; 1 � m � 1þ l
1ð Þ

i

� �
; 1 � n � 1þ l

1ð Þ
s

� �
and �

represents the element-wise product of Hiðm; :Þ and Hsðn; :Þ. The

first 2 dimensions of the tensor His are 1þ l
1ð Þ

i

� �
and 1þ l

1ð Þ
s

� �
, re-

spectively. Here, each investigator’s medical concept is matched to

Figure 1. The proposed system for matching clinical trials to investigators. Investigators (on the left) provide self-reported specialties, and their patient visit his-

tory may be available. Clinical trials (on the right) contain documents describing the treatment and purpose of the trial, primary indication (PI), primary therapeu-

tic area (PTA), and desired population. The matched pairs of investigators and trials contain investigator performance reports from historical data used by the

considered models to learn to rank investigators.
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each trial-related term, and the element-wise product of their vectors

represents a dp-dimensional thread in the matching tensor. With this

operation, we aim to capture intra-relations between investigators’

medical concepts along with their specialties and clinical trials medi-

cal terms.

Learning to predict enrollment scores from matched

representations. The matching tensor His from the previous block is

convolved through the entire depth dp ¼ 50 by 3 convolutional

blocks with different filter sizes: 3� 3; 3� 4; 3� 5. The choice of

this combination was determined by filter size fine-tuning. The num-

ber of filters is fixed to 6 for both the first set of convolution blocks

and the final convolutional layer. Such cross-convolutional opera-

tors were successfully applied in the past to tasks of modeling simi-

larities between general sentences.22 Interaction representations

between medical concepts and trial-related terms are learned here,

and they are passed through the ReLU layer, after which another 1

�1 convolution with ReLU is used prior to the 2-dimensional max-

pool layer that embeds a whole investigator–study pair into a single

vector. Finally, this vector is fed into a fully connected layer and

passed through a squared-loss (L ¼ ðy� f ðxÞÞ2, where f ðxÞ is the

network described above) layer to predict enrollment scores for in-

vestigator–study pairs.

The enrollment scores for each investigator per clinical trial are

finally used for obtaining the investigator rank.

Experiments
We designed an extensive empirical setup to assess the performance

of DM and address the following research questions:

[Q1]: How do the models compare when ranking investigators for

clinical trials?

[Q2]: Does adding additional deep layers boost the generalization

performance of DM?

[Q3]: Is DM capable of capturing complex relations between inves-

tigators and trials through its matching layer better than us-

ing simpler strategies (a simple concatenation of the

investigators’ and trials features)?

[Q4]: How does DM perform when trained with and without the

trial-related text data in addition to the internal EHR and

performance data?

[Q5]: How do the models perform for investigators with no previ-

ous trial participation history?

[Q6]: How do the models compare for detecting the bottom/top

30% performing investigators?

Experimental setup

The experiments were conducted in a manner that reflects a real-

world situation from the clinical trial business such that the same

trial–investigator pairs cannot appear in the training, validation,

and test data subsets. In particular, all models were tested on studies

Figure 2. System overview. The system has several layers consisting of multiple components employed for carrying out separate tasks: 1. Data layer. The data

sources are integrated to create separate views for investigators and studies. Word2vec21 is employed to learn vector representations of relevant medical con-

cepts occurring in all free-form public study texts (clinicaltrials.gov). All contents of the study data view, along with the learned medical term representations, are

passed as an additional input to the offline training layer. 2. Offline training. DeepMatch (DM) learns representations for the medical terms driven to predict the

investigators’ enrollment scores. DM’s weights are then stored on a distributed file storage. 3. Online ranking. DM’s weights are loaded in this layer and ranking

is performed for upcoming studies in an on-the-fly fashion. An upcoming study is passed to the matching component where it is matched against existing investi-

gators from the investigator data view; their enrollment scores with regards to the given study are then predicted; finally, the top k most eligible investigators are

returned by the retriever.
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that started in 2016 and 2017. Studies that started in 2015 were

used for validation and hyperparameter tuning, whereas all studies

that started prior to 2015 were used for training. The characteriza-

tion of the training, validation, and test set sizes is given in Table 1.

The task is to rank investigators by their expected enrollment.

Baseline methods

The accuracy and relevance of enrollment scores predicted by

DM was compared against the following alternatives (represent-

ing both current industry standard and state-of-the-art learning

approaches):

• Median enrollment (ME). The current industry standard is to

take the median enrollment from within the therapeutic area of

interest to predict future enrollment scores.
• Point-wise support vector regression (SVR). A support vector re-

gression model23 that approaches the investigator-to-study

matching in a pointwise ranking fashion.
• Linear model (LM). A linear model is employed for predicting

investigators’ enrollment scores based on their handcrafted fea-

tures (their specialties, as well as the frequencies of their patients’

diagnoses, procedures, and medications) and study text data

(summarized by summing up the numerical vectors of clinical

trial terms).

Figure 3. DeepMatch(DM) model architecture. DM takes 2 sets of inputs that correspond to features of an investigator and text of a clinical trial from universes of

medical terms jV j and concepts jMj. An investigator’s features consist of a list of his/her clinical specialty areas represented as an l
ð2Þ
i x jV j matrix and summa-

rized EHR data of investigators’ patients represented as l
ð2Þ
i x jV j. A clinical trial features include a public report for a trial (text) and its PI and PTA; these compo-

nents are represented as l
ð2Þ
s x Vj j and l

ð1Þ
s x jV j, respectively. The embeddings of both input sets V and M are obtained through a series of layers, including fully

connected layers with rectified linear units and bi-directional LSTM layers which learn interactions between words and concepts in each input independently. The

element-wise product is then calculated for all pairs of the learned embeddings and organized in a matching tensor. Finally, the constructed matching tensor is

passed through a series of cross-convolutional and pooling operators to learn the investigator–trial enrollment scores.
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• Multilayer perceptron (MLP). A 2-layer MLP model is used to

learn the second-order interactions of the handcrafted features

and the summarized trials text to predict the investigators’ en-

rollment scores.
• DeepConcat (DC). A model similar to the proposed DeepMatch;

however, in DC, trials and investigators’ feature maps are sum-

marized into respective vectors which are only concatenated af-

terwards.

Evaluation measures. As our main goal is to rank investigators for

upcoming studies, all models were evaluated using the normalized

discounted cumulative gain (NDCG).25–26 Given a list of

investigator–study pairs ranked by their enrollment scores, NDCG

is calculated as NDCG@K ¼ DCG@K
IDCG@K, where DCG@K ¼

PK
k¼1

2relk�1
log2ðkþ1Þ with relk being a tier relevance value for the enrollment

score of the k-th investigator, whereas IDCG@K represents the ideal

DCG (producing the maximum possible DCG through position K).

The final NDCG values are reported as the average of NDCG val-

ues over the 159 studies in the test set (see Table 1). In the conducted

experiments, in addition to NDCG@K, NDCG@Ni was measured

as well, where Ni is the number of investigators that participated in

the i-th study, and the average over all studies is reported as

NDCG@N.

As most of the baselines directly predict investigators’ enrollment

scores, we also compare these models using the mean squared error

(MSE) measure.

Finally, to evaluate the models’ performance in a more domain-

savvy manner, we measure their classification accuracy for the task

of detecting the bottom/top 30% performing investigators, where

the goal is to simply classify whether an investigator is within the

top or bottom 30% of the performers on a given study.

RESULTS

DM and alternatives were trained using gradient descent with

learning rate of 0.0001 over 20 data set iterations on NVIDIA P100

GPU machines and were evaluated such that the research questions

(Q1–Q6) are answered in a clear and comprehensive manner.

Ranking investigators for new clinical trials
The goal is to rank investigators for upcoming clinical trials. To an-

swer the first research question [Q1], we measure NDCG when

ranking investigators for each upcoming test study and report the

average NDCGs across all test studies. Due to the variable number

of investigators across different clinical trials Table 2 reports the

NDCG@N scores of the 6 models, where N is the total number of

investigators for a particular study. Figure 4 shows their ranking

performance in terms of NDCG@K when K is varied from 2 to 10.

The best performing model for the task of ranking investigators

for new studies was the proposed DM. It brings in an average accu-

racy improvement of 2.5% in NDCG over the next best performing

DC model (a statistically significant improvement according to the

Wilcoxon signed-rank test, where the corresponding P value of

1.61e�11 is measured on NDCG@2 through NDCG@30 along with

NDCG@N) and even an �11% improvement over the industry

standard ME.

Even though our business task relies on a ranking problem, it is

approached through regression; therefore, we report MSE in Table 2.

According to these results, DM outperformed all alternatives on the

enrollment score prediction task as well. It was more accurate, on

average, than the industry standard and the best-performing baseline

by approximately 4 and 2 recruited patients (calculated as difference

Table 1. Training, validation, and test set size characterization: Number of Unique Studies, Number of Unique Investigators, Number of

Records, Average Number of Investigators per Study, and Average Number of Patients Recruited per Investigator–Study pair. The relatively

small number of recruited patients per investigator reflects the typical number of patients sought per trial type (275 patients per cardiovas-

cular trial, 20 patients per cancer trial [which makes up almost 50% of all trials], 70 patients per depression trial, and 100 per diabetes trial24)

Years UniqueStudies UniqueInv. No. of Records Avg. no.Inv. per Study Avg. no. Recruited Patients per Inv.

Train. < 2015 2250 21223 70906 32 5

Valid. 2015 209 1958 2489 11 4

Test 2016, 2017 159 1841 2236 14 4

Table 2. Performance of DM and alternatives w.r.t. NDCG@N

(higher is better) for the investigators ranking task and MSE (lower

is better) for the enrollment score prediction task. Note that MSE*

is the MSE calculated in terms of the unstandardized enrollment

score (ie, the number of patients)

NDCG MSE MSE*

ME 0.63 1.17 75

SVR 0.64 100 6423

LM 0.69 100 6423

MLP 0.70 0.62 39

DC 0.72 0.58 37

DM 0.74 0.38 24

Abbreviations: DC, DeepConcat; DM, DeepMatch; LM, linear model;

ME, median enrollment; MLP, multilayer perceptron; MSE, mean squared er-

ror; NDCG, normalized discounted cumulative gain; SVR, support vector re-

gression.

Figure 4. Average NDCG@K for DM vs 5 alternatives across 159 test studies,

for K in range of 2 to 10.
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of squared roots of MSE*), respectively. The average number of

recruited patients being 4 supports the significance of these improve-

ments (Table 1).

Deeper architectures work better. Another conclusion drawn

from these results is that the models relying on deeper architectures

seem to capture certain latent patterns among the investigator–study

pairs, thus leading to greater generalization performance compared

to the shallow alternatives. More precisely, the generalization per-

formance when ranking investigators ameliorates as additional

layers are introduced: the worst accuracy is obtained by a linear

model, it is improved by using 2-layer MLP, and was the most accu-

rate for DC and DM, which answers research question [Q2].

DM captures complex relations between investigators and trials

through the matching layer. The statistically significant improve-

ment introduced by DM’s matching layer over DC’s simple concate-

nation layer shows that DM can capture complex relations between

investigators and trials while learning a joint representation, which

is useful for the overall goal of predicting enrollment scores. This

observation unfolds the answer to [Q3].

Trial-related text data improve the performance of DM. To an-

swer question [Q4], we evaluated DM’s performance using only in-

ternal data to determine whether the effort of crawling and

processing the public study data brings any improvement. The ex-

perimental results indicate that using the partially observed public

study data (available for �75% of the studies in the internal data-

base) brings an improvement of �1% in average NDCG over all

studies and �3% of improvement measured on new investigators

only, thus justifying the engineering effort.

Handcrafting features from text data is a tedious task even with

well-nuanced and clearly written documents of clinical trials, pri-

marily due to nonconsistency in clinical trial terminology (eg, some

companies use the term clinical trial, while others use clinical study)

and writing styles. Therefore, we learned text representations on

original clinical trial texts (without text preprocessing) as keeping

even a single medical abbreviation (eg, “rct” or “t2dm”) is of great

importance when using word2vec21 to initialize the embedding

layers of DM.

The largest accuracy improvement was observed for investiga-

tors with no previous clinical trial participation history. In the test

set, �25% of the cases (534 out of 1841) are investigators with no

previous experience in clinical trials. All methods based on historical

enrollment, including ME, are incapable of making predictions for

such cases. To answer [Q5], in Table 3 we show the NDCG@N

obtained by DM and all alternative models when measured (1) on

all test cases, (2) only for investigators with previous experience,

and (3) only for new investigators (not previously observed in the

training data set).

DM showed the largest improvement of 5% over the next best

baseline model when predicting scores of investigators with no previ-

ous experience. Contrary to ME, the proposed framework is capable

of handling cold-start cases by exploiting the available context of each

investigator (his patient visits or his reported specialties), and drawing

benefits from the matching layer and the information available in the

study data view. Although the proposed model has shown smaller

improvements (such as 2%) on (1) all cases, and (2) previously known

investigators, it still yields the best performance, with the highest gain

being achieved against the current industry standard.

Note that the values from different columns in Table 3 are not

comparable in this form as N is different for (1), (2), and (3) per

study. However, when K was fixed to a smaller number in our fur-

ther analysis, simpler methods (ME, LM) obtained the best results

on known investigators (2), while deeper models were able to learn

informative features that enabled them to perform well on all

3 groups.

Detecting bottom 30% and top 30% performers
In addition to ranking investigators for upcoming studies, an impor-

tant task [Q6] is to identify which investigators will be the low-

performing and exclude the bottom 30% in the business process of

selecting sites for clinical trials. The 30% of top enrollees are identi-

fied as well, and the performance in both cases in terms of Recall,

ROC AUC, Accuracy, and F1 score are shown in Table 4.

The current industry standard to site performance prediction is

to take an average (or median) of the investigators’ historical perfor-

mance within the therapeutic area of interest. If a low-enrolling in-

vestigator is defined as 1 ranked in the bottom 30% of a given

study, this approach can accurately identify low enrollees 39% of

the time (as measured using internal data). However, we report the

performance of ME, a variant of the industry standard, that predicts

the enrollment score of an investigator as the median over all his or

her past enrollment scores instead of over the investigators’ scores

within the therapeutic area of interest, since such a modification has

shown to be more accurate in our additional analysis. This modified

ME predicts the median of an investigator’s historical enrollment

scores, or it predicts zero for an investigator with no previous enroll-

ment history.

The results provide evidence that the proposed model was able

to identify top 30% and bottom 30% performers more accurately

Table 3. NDCG@N for DM and alternative models measured (1) on

all test cases, (2) only for investigators with previous experience,

and (3) only for new investigators (not previously observed in the

training data set)

(1) (2) (3)

All Known Only Unknown

ME 0.63 0.67 0.61

SVR 0.64 0.68 0.71

LM 0.69 0.72 0.73

MLP 0.70 0.73 0.74

DC 0.72 0.74 0.75

DM 0.74 0.76 0.80

Abbreviations: DC, DeepConcat; DM, DeepMatch; LM, linear model;

ME, median enrollment; MLP, multilayer perceptron; SVR, support vector re-

gression.

Table 4. Classification performance in terms of Recall, ROC AUC,

Accuracy and F1 score on the task of detecting bottom and top

30% performers

Bottom 30 Top 30

Recall AUC Accuracy F1 Recall AUC Accuracy F1

ME 0.64 0.72 0.75 0.64 0.53 0.64 0.68 0.53

SVR 0.50 0.60 0.64 0.50 0.42 0.55 0.59 0.42

LM 0.63 0.71 0.74 0.63 0.48 0.60 0.65 0.48

MLP 0.65 0.72 0.75 0.65 0.54 0.65 0.69 0.54

DC 0.65 0.73 0.76 0.65 0.60 0.69 0.73 0.60

DM 0.67 0.75 0.78 0.67 0.65 0.74 0.77 0.65

Abbreviations: DC, DeepConcat; DM, DeepMatch; LM, linear model;

ME, median enrollment; MLP, multilayer perceptron; SVR, support vector re-

gression.
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than alternatives, bringing large business value to the company. As

mentioned earlier, for a typical Phase 2 or Phase 3 clinical trial for

which enrolling patients can take years, even a minor improvement

in accuracy at predicting the top and bottom enrolling sites is worth

tens of millions of dollars.

CONCLUSION

DM, a novel deep learning model, is proposed to rank investigators

for clinical trials along with an outline of a system that utilizes this

model for optimizing site selection. The matching capabilities of

DM were assessed for the tasks of (1) ranking investigators, and (2)

identifying bottom/top performers for upcoming clinical trials.

Compared against several alternative models, and under a variety of

scenarios, DM outperformed its alternatives. Moreover, advances

presented in this study are applicable beyond the presented case.

The proposed methods can be utilized in any task where one needs

to discover a match among instances from multiple sources of struc-

tured and unstructured data. Prominent examples of such tasks are

online recommender systems and professional networking services.

Due to the high impact of the problem at hand, the authors believe

that related research efforts will shift the paradigm of how investiga-

tors are selected for clinical trials and pave the road to clinical trial

optimization and automation, reduce drug development costs, and

ultimately expedite delivery of new therapies.
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