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Abstract

In long-term forecasting it is important to estimate the
confidence of predictions, as they are often affected by
errors that are accumulated over the prediction hori-
zon. To address this problem, an effective novel itera-
tive method is developed for Gaussian structured learn-
ing models in this study for propagating uncertainty in
temporal graphs by modeling noisy inputs. The pro-
posed method is applied for three long-term (up to 8
years ahead) structured regression problems on real-
world evolving networks from the health and climate
domains. The obtained empirical results and use case
analysis provide evidence that the new approach allows
better uncertainty propagation as compared to published
alternatives.

Introduction
Conditional probabilistic graphical models provide a power-
ful framework for structured regression in spatio-temporal
datasets with complex correlation patterns. It has been
shown that models utilizing underlying correlation patterns
(structured models) can significantly improve predictive ac-
curacy as compared to models not utilizing such informa-
tion (Radosavljevic, Vucetic, and Obradovic 2010; 2014;
Ristovski et al. 2013; Wytock and Kolter 2013; Stojanovic
et al. 2015) .

This study is aimed to support structured regression for
long-term decision making, which has been of interest in
many high impact applications. For example, in order to
prepare beds, personnel and medications, hospitals are in-
terested in estimating future number of patients admitted
in different departments. Providing long-term predictions of
healthcare trends could immensely increase quality of de-
cisions, which could lead to better hospital care (Dey et
al. 2014; Stiglic et al. 2014; Ghalwash, Radosavljevic, and
Obradovic 2014; Gligorijevic, Stojanovic, and Obradovic
2015), drug coverage and health insurances for clients in
need. On the other hand, long-term predictions of geophysi-
cal variables, such are predictions of precipitation and light-
ning strikes, are very important in agriculture, telecommu-
nications, power systems and elsewhere (Sivakumar and
Berndtsson 2010; Dokic et al. 2016), thus enabling more
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efficient fund management and providing more stable ser-
vices.

However, good predictive accuracy is not always suffi-
cient for the long–term decision making. Uncertainty esti-
mation, a tally of reliability for model predictions, is an im-
portant quality indicator used for decision making (Smith
2013). It is also reasonable to assume that reliability of a
model decreases when predicting further in the future. This
is due to noisiness in input data, caused by a change in dis-
tribution or accumulated error of iterative predictions, and it
should be reflected in the increase of estimated uncertainty
of the model predictions. This effect is often referred to as
uncertainty propagation. Therefore, to decide the time point
on the prediction horizon, or level of certainty with which
the predictive model could be considered as useful and reli-
able, it is important to have a proper uncertainty propagation
estimate for reasoning under uncertainty.

Thus, a particular interest of this paper is long-term fore-
casting on non-static networks with continuous target vari-
ables (structured regression) and proper uncertainty propa-
gation estimate in such evolving networks. This is motivated
by climate modeling of long–term precipitation prediction in
spatio–temporal weather station networks, as well as predic-
tion of different disease trends in temporal disease-disease
networks.

Methods that address uncertainty propagation in multiple
steps-ahead prediction can be viewed as direct and itera-
tive (Smith 2013). In both types, error estimates made by
the models should be taken into account, to ensure uncer-
tainty propagation. Direct methods are the ones where un-
certainties can be explicitly computed while predicting in
the future. They assume that input variables will be available
in the entire prediction horizon. However, this is a strong
assumption when predicting far ahead, thus limiting many
of the models. Moreover, these methods usually need more
training data than iterative methods to produce useful pre-
dictions. Therefore, we will not focus on direct methods in
this paper. Iterative methods, on the other hand, can provide
prediction any number of steps ahead, up to the desired hori-
zon. These methods are iteratively predicting one step ahead
and use lagged predictions as model inputs, as shown in Fig-
ure 1. In this study we assume that input variables in each
of the steps are normally distributed as N (µXT+k

,ΣXT+k
),

and that the new point estimate ŷT+k = µT+k is obtained



Figure 1: Iterative multiple–steps–ahead prediction in a temporal
network represented by a vector of input attributes (Xt) and target
variables yt for each time step t. Initial L time steps (green boxes)
are observed and remaining steps (blue boxes) are predicted itera-
tively in a one time step ahead process (red box).

using a predictive model.
To address uncertainty propagation in multiple steps

ahead forecasting on evolving networks we propose a
novel iterative uncertainty propagation model for struc-
tured regression that extends Continuous (Gaussian) Condi-
tional Random Fields (GCRF) (Radosavljevic, Vucetic, and
Obradovic 2010; 2014). In the proposed model, uncertainty
that naturally comes from the data itself is taken into account
when estimating uncertainty of the model predictions. Such
setup enables iterative multiple–steps–ahead prediction with
the GCRF as an iterative uncertainty propagation method.

In the past, iterative methods were developed for the
Gaussian models (Girard et al. 2003; Candela et al. 2003;
Kocijan et al. 2004; 2005), however, without strong empir-
ical analysis. Moreover, to the best of our knowledge this
is the first study addressing uncertainty propagation through
iterative propagation methods for regression on graphs. To
evaluate the quality of the proposed method, we compare to
the several benchmarks from the group of unstructured itera-
tive models: iterative Linear Regression (ILR) (Smith 2013)
and iterative Gaussian Processes (IGP) (Girard et al. 2003;
Candela et al. 2003). Results show evidence of benefits of
using structure information for prediction and uncertainty
propagation estimation in multiple–steps–ahead setup.

Key contributions of this paper are summarized bellow:

• A novel extension is provided for the GCRF model where
we enable it to perform structure learning, rather than us-
ing sub-optimal predefined structure;

• A statistically sound practical approach is proposed to
correct GCRF’s uncertainty estimation that improves ap-
plicability via modeling uncertain inputs;

• A novel approach is developed for iterative multiple-
steps-ahead prediction with propagation of errors ex-
pressed in terms of uncertainty estimation;

• Robustness of the proposed approach is demonstrated by
applications to high impact real-world problems in cli-

mate and healthcare.
The supplement materials with additional experiments

and theoretical derivations, as well as the Matlab implemen-
tation are available for download at the authors’ websites.

Structured Regression Models
In this section a graph based structured regression model is
described first, followed by a description of the proposed
long–term predictive model as well as mathematical back-
ground for forecasting from noisy inputs. For readability
purposes we provide a table of notation symbols:

Symbol Notation meaning

Xt/Yt Input/Output variables for entire network in time step t
xi/yi Input/Output variable for particular node in network
x

(d)
i d’th dimension of input variable for node i
µx∗ Means of inputs distributions
{ΣX∗} Covariances of inputs distributions
µ∗ Predictive mean
Σ∗∗ Predictive variance

Gaussian Conditional Random Fields
Gaussian Conditional Random Fields (GCRF) (Radosavlje-
vic, Vucetic, and Obradovic 2010; 2014) is a structured re-
gression model that captures both the network structure and
the mapping from attribute values of the nodes (X) to vari-
ables of interest (y). It is a model over a general graph struc-
ture, and can represent the structure as a function of time,
space, or other user-defined structures. It models the struc-
tured regression problem as estimation of a joint continuous
distribution over all nodes in a graph. For our purposes the
model takes the following log-linear form

p(y|x) =
1

Z
exp(

K∑
k=1

N∑
i=1

αk(yi −Rk(X, θk))2

+

L∑
l=1

∑
i∼j

βlS
(l)(xi, xj , ψl)(yi − yj)2) (1)

where α and β are parameters of the feature functions, which
model the association of each yi and X , and the interaction
between different yi and yj in the graph, respectively. Here,
Rk(X, θk) functions are any specified unstructured predic-
tors that mapX → yi independently, and might also be used
to incorporate domain specific models. θk are parameters of
the k-th unstructured model. Similarity metric S(l)(X,ψl)
is used to define the weighted undirected graph structure be-
tween labels, for which parameters ψl might be specified.

Learning the structure via a predefined similarity metric,
rather than simply using a given graph structure, is a novelty
for the GCRF model considered in this study. We have, thus,
enabled this model to perform structure learning of node la-
bels correlations.

The final form of this GCRF model is defined by its mean
µ and covariance Σ−1 matrices which we specify as

Σ−1 =

{
2α+ 2

∑
l

∑
g βlS

(l)(xi, xg, ψl), i = j

−2
∑
l βlS

(l)(xi, xj , ψl), i 6= j
(2)



and:

µ = 2Σ

(∑
k

αkR(xi, θk)

)
. (3)

Quadratic form in Eq. 1 can be represented as a multivari-
ate Gaussian. This specific way of modeling allows efficient
inference and learning. Additionally, the GCRF model can,
due to its Gaussian form, intrinsically highlight areas of the
input space where prediction quality is poor by indicating
the higher variance around the predicted mean.

Learning the GCRF model: The learning task is to op-
timize parameters α̂, β̂, θ̂, ψ̂ by maximizing the conditional
log–likelihood,

(α̂, β̂, θ̂, ψ̂) = argmax︸ ︷︷ ︸
α,β,θ,ψ

logP (y|X;α, β, θ, ψ). (4)

All the parameters are learned by a gradient-based optimiza-
tion. Note that both the unstructured predictors and similar-
ity metrics should be differentiable such that all parameters
can be optimized using gradient methods.

Gradients of the conditional log-likelihood are

∂L
∂αk

= −1

2
(y − µ)T

∂Σ−1

∂αk
(y − µ)+

+ (
∂bT

∂αk
− µT ∂Σ−1

∂αk
)(y − µ) +

1

2
Tr(Σ

∂Σ−1

∂αk
)

∂L
∂βl

= −1

2
(y + µ)T

∂Σ−1

∂βl
(y − µ) +

1

2
Tr(Σ

∂Σ−1

∂βl
)

∂L
∂θk

= 2αk(y − µ)
∂Rk

∂θk

∂L
∂ψl

= −1

2
(y − µ)

∂Σ−1

∂Sl

∂Sl

∂ψl
(y − µ)T +

1

2
Tr(Σ

∂Σ−1

∂Sl

∂Sl

∂ψl
).

(5)

Maximizing the conditional log–likelihood is a non-
convex, however smooth objective, and can be optimized us-
ing standard Quasi-Newton optimization techniques. Partial
derivatives in Eq. 5 are specific for the choice of unstruc-
tured predictor and similarity metric. Note that Rk(X, θk)
and S(l)(xi, xj , ψl) functions can be any differentiable pre-
dictor and similarity function. The GCRF model is Gaussian
and, therefore, the maximum a posteriori estimate of y is ob-
tained at the expected value µ of the GCRF distribution.

In this paper, for the simplicity, the choice of the unstuc-
tured predictor is a linear function Rk(x, θk) = xθk, and
choice of parametrized similarity metric is the Gaussian ker-
nel similarity:

S(xi, xj , ψ) = ψ0exp

(
−1

2

D∑
d=1

(x
(d)
i − x

(d)
j )2

ψ2
d

.

)
(6)

The optimization problem of this model is non–convex.
Therefore, there are no guarantees that the solution will be
optimal, as the model can be potentially optimized to a lo-
cal minimum (Radosavljevic, Vucetic, and Obradovic 2014).
However, a good initialization of parameters based approach
should lead to a close to optimal solution for such deep ar-
chitectures as the one proposed in this paper (Bengio 2012).

Uncertainty propagation by modeling noisy inputs

Uncertainty estimation should always take into account un-
certainty that naturally comes from the data itself. Our ap-
proach gravitates around inclusion of uncertainty coming
from input variables, when previously obtained predictions
are used as inputs. Such setup enables multiple–steps–ahead
prediction with the GCRF as an iterative uncertainty prop-
agation method, which could be applied in practice for the
problems addressed in this study.

In order to model the distribution of input variables, a rea-
sonable Gaussian error assumption is made about generating
process u of input variables x. Thus, the distribution of input
variables can be presented as p(x) = N (u,Σx). The new
data point for prediction will be annotated as x∗. In the gen-
eral case, we predict on the entire set of points representing
a single snapshot of a network, so we annotate testing points
with X∗.

The distribution of the target variable can then be ex-
pressed by the marginalization of input variables distribu-
tion:

p(y∗|D) =

∫
p(y∗|X∗,D)p(X∗)dX∗ . (7)

As the distribution of p(y∗|X∗,D) is Gaussian in the GCRF
model, and the distribution of X∗ is conjugate to the tar-
get variable distribution, marginal distribution p(y∗|D) is a
Gaussian as well. Since this integral is intractable for esti-
mation in most of the cases, potential ways of solving it in-
clude sampling methods, variational Bayes or direct approx-
imation of the moments of distribution as shown in (Girard
2004). For large or complex non–linear parametrized mod-
els, sampling–based uncertainty propagation is often com-
putationally infeasible. This work is focused on approximat-
ing moments of the resulting distribution in Eq. 7, similarly
to (Girard et al. 2003), however extended for evolving net-
works.

It is useful to first formalize the conditional Gaussian pre-
diction form of the GCRF at point X∗

P (y∗|X∗) = N
([

µ
µ∗

]
,

[
Σ Σ∗

ΣT∗ Σ∗∗

])
, (8)

where predictive mean µ∗ and variance Σ∗∗ of the network
are defined in Eq. 3 and as inverse of Eq. 2 respectively.

In order to approximate the resulting distribution in Eq. 7,
we approximate its first two moments (Girard et al. 2003).
Moments can be expressed using the law of iterated expec-
tation and conditional variance and solved using Laplace’s
method. Such methods of uncertainty propagation that are
done by truncating multi–dimensional Taylor expansions of
quantities of interest in order to approximate uncertainty cri-
teria are called perturbation methods in the literature. Accu-
racy of such approach is governed by the order of Taylor
expansion (Smith 2013).

The first moment of the distribution specified in Eq. 7
does not provide any correction over the zero’th order,
within the first order Taylor expansion.

The second moment (v(X∗)) is approximated by the sec-



ond order Taylor expansion and its approximation yields:

v(X∗) = Σ∗∗

∣∣∣
X=µX∗

+
1

2
Tr [HΣ∗∗{ΣX∗}]+JTµ∗

{ΣX∗}Jµ∗ ,

(9)
where we find several new terms. ΣX∗ is introduced as vari-
ance from distribution of X∗. The notation {ΣX∗} serves
to signify that rather than maintaining a single covariance
matrix for all nodes in the graph, we can opt for maintain-
ing a covariance matrix for each node in the graph. Jacobian
JΣ∗∗ simplifies Od ∂Σ∗∗

∂X
(d)
∗

∣∣∣
X=µX∗

, and Hessian HΣ∗∗ simpli-

fies Od,e ∂2Σ∗∗

∂X
(d)
∗ ∂X

(e)T
∗

∣∣∣
X=µX∗

.

This is a point where information from distribution of in-
put variables X provides a correction over predictive un-
certainty of the GCRF. We see from Eq. (9) that there is a
correction of the predictive variance: 1

2Tr [HΣ∗∗{ΣX∗}] +

JTµ∗
{ΣX∗}Jµ∗ , influenced by the distribution of input vari-

ables via {ΣX∗}. By solving partial derivatives Jµ∗ , JΣ∗∗
and HΣ∗∗ , we obtain corrected predictive variance that in-
cludes uncertainty coming from input variables. As we can-
not analytically determine Σ∗∗ we use the derivative of an
inverse rule to solve JΣ∗∗ :

JΣ∗∗ = −OdΣ∗∗
∂Σ−1

∗∗

∂x
(d)
∗

Σ∗∗, (10)

and for the Hessian HΣ∗∗ :

HΣ∗∗ = Od,eΣ∗∗

(
2
∂Σ−1

∗∗

∂X
(d)
∗

Σ∗∗
∂Σ−1

∗∗

∂X
(e)
∗
− ∂2Σ−1

∗∗

∂X
(d)
∗ X

(e)T
∗

)
Σ∗∗.

(11)

Jµ∗ = Od − Σ∗∗
∂Σ−1

∗∗

∂x
(d)
∗

2αX∗θ + Σ∗∗2αθ(d)T , (12)

where Jacobian in Eq. 12 is solved for the case when only
one linear predictor is used. First and second derivatives of
Σ∗∗ can be calculated from Eq. 2.

Using derivations from Eq. (10), (11), (12), which are spe-
cific to the GCRF model, in the equation of approximated
variance (9), we obtain corrected variance for the GCRF
model. The model’s predictive variance is dependent on
variance of input data, assuming input data has a Gaussian
error. This allows the GCRF model to be sensitive to sig-
nificant changes on input data distribution, which results in
higher predictive variance when predicting in the unknown.

To ensure propagation of uncertainty we apply the itera-
tive approach to multiple-steps-ahead prediction, since we
include uncertainty that is accumulating from the input vari-
ables (Candela et al. 2003; Girard et al. 2003).

Uncertainty propagation In order to properly model
previous outputs as inputs as we predict ahead in time,
lagged outputs are observed as random variables. The in-
put vectors, will also be random variables, as they incor-
porate predictions recursively, XT ∼ N (µXT+k

,ΣXT+k
).

Note that for each node in a network we will maintain a
N (µXT+k

,ΣXT+k
) distribution. After each successive pre-

diction, as new predicted values become inputs for the next

prediction, ΣX∗ needs to be updated accordingly. In order to
update ΣXT+k

for the new input ŷT+k, we need to calculate
cross-covariance terms ΣXT+k

using

cov(yT+k, XT+k) = JTµT+k
{ΣXT+k

}. (13)

Now that we have all components needed, an inference pro-
cedure that handles noisy inputs defined as lagged predic-
tions is described as Algorithm 1.

Algorithm 1 Multiple–steps–ahead GCRF regression
Input: Test data X, model (αk, βl, θk, ψl)
1. Initialize ΣX∗ for each node in a graph with all zeroes
2. Make a one–step–ahead prediction of ŷT+1

for k = 2...K do
3. Update inputs according to the previous predictions

ŷT+k−1

4. Update {ΣX∗} for the previously introduced noisy
input using Eq. (13)

5. Predict following time step ŷT+k using Eq. 3 and
Eq. 9
end for

Data
Inpatient discharge data: We used the State Inpatient
Databases (SID)1 California database provided by the
Agency for Healthcare Research and Quality and is included
in the Healthcare Cost and Utilization Project (HCUP) . This
dataset contains 35,844,800 inpatient discharge records over
9 years (from January 2003 to December 2011) collected
from 474 hospitals. For each patient there are up to 25 diag-
nosis codes together with additional inpatient information.
Problems considered in this study are long-term prediction
of admission and mortality rate for each diagnoses out of
260 CCS coded diagnoses groups in a comorbidity graph
that is constructed in monthly resolution for these 9 years of
data.

Climate precipitation data: A dataset of precipitation
records from meteorological stations across the USA has
been acquired from NOAA’s National Climate Data Cen-
ter (NCDC) (Menne, Williams, and Vose 2009). A temporal
graph is constructed on monthly resolution such that nodes
at each time slice represent one hundred stations from the
North West region of the USA, where we observed less than
5% of missing data in the months used for evaluations. Pre-
dictive problem from this domain is long–term monthly pre-
cipitation amount prediction in different weather stations.

As mentioned in the methodology section, graph structure
for the described datasets will be learned within the pro-
posed structured model, such that predictive power of the
model is maximized.

1HCUP State Inpatient Databases (SID). Healthcare Cost
and Utilization Project (HCUP). 2005-2009. Agency for
Healthcare Research and Quality, Rockville, MD. www.hcup-
us.ahrq.gov/sidoverview.jsp



Experimental results
Set-up of the experiments conducted on two real-world
datasets from the medical and climate domains, and re-
sults in terms of predictive error (Mean Squared Error -
MSE) and plots of predictions with propagating uncertainty
are reported in this section. The results of the three itera-
tive models clearly demonstrate benefits of the structured
GCRF model, which, in addition to learning a linear map-
ping x → y, improved accuracy by including information
from the graph structure.

The obtained propagation of uncertainty as the model in-
crementally predicts further in the future was significantly
better than alternatives and it follows the change of data dis-
tribution for the GCRF model, while previously developed
non structured model IGP often fails to do so. Specific find-
ings on predicting admission and mortality rate based on in-
patient discharge data and on predicting precipitation over
the North West region of the US are reported in the follow-
ing subsections.

Experiments on disease networks
For disease admission and for mortality rate prediction we
have trained our models on 36 monthly snapshots and it-
eratively predicted for the following 48 months. For each
disease we have used 18 months of previous target variable
values as inputs for training and prediction. Admission count
for each disease has been normalized. Mortality rate is de-
fined as the number of patients that have died with a disease
as the primary cause divided by the number of patients who
were admitted to hospitals with the same disease as the pri-
mary one.

Experimental results on admission rate prediction
Mean Squared Error for three algorithms for one step and
multiple steps ahead prediction are shown at Figure 2(a). As

(a) admission rate (b) mortality rate

Figure 2: MSE of one (blue) and multiple (red) 48 months ahead
predictions of admission rate (a) and mortality (b) for all 260 dis-
ease categories obtained by 3 methods.

expected, multiple–steps–ahead prediction has larger MSE
when compared to the prediction of the first time step only.
While accuracy of the proposed GCRF model with linear
unstructured predictor is comparable to nonlinear IGP for a
single step prediction of admissions and mortality rate, in
both applications the extended GCRF was more accurate for
the long–term predictions, which clearly demonstrates ben-
efits of using the information from the structure.

In Figure 3, we show prediction and uncertainty prop-
agation of GCRF and IGP for Septicemia disease (we do

not show ILR since the accuracy was bad for multiple steps
ahead prediction and the model does not provide satisfac-
tory uncertainty propagation). We observe that there was a
huge change in the test data distribution of admission rate of
Septicemia vs. training distribution and so models failed to
predict a huge increase in the number of sepsis related ad-
missions that occurred after some point in future. As predic-

(a) GCRF

(b) IGP

Figure 3: [y–axis]: Predictions (red lines) and uncertainty esti-
mates (gray area) of GCRF and IGP models for Septicemia disease
admission rate (orange line) for up to 48 months (4 years) ahead
[x–axis].

tion error was accumulating, the uncertainty propagation for
the extended GCRF model properly followed the errors the
model was making, which is a desirable feature for a predic-
tive model. This is due to the change of distribution of input
variables, which are moving away from the distribution of
the input features on the training data, causing the correc-
tion term from Eq. 9 to become larger and larger. However,
such a behavior is not observed when using the IGP model,
which is due to the stale predictions where the model’s in-
puts do not change as IGP’s predictions vary only slightly.

Depending on the purpose and the precision needed for
decision making, we may propose that when predicting the
number of admissions up to 24 months ahead, results ob-
tained by the extended GCRF model were acceptably re-
liable, however after that, we should consider waiting for
more input values as indicated by increased uncertainty.
On the other hand, if we were to trust the IGP based self-
estimate of confidence, we would make a huge error in pre-
diction estimate, as early as after 7-th month of prediction
and uncertainly bounds would not provide any evidence that
these predictions are poor.

Experimental results on mortality rate prediction Re-
sults for the mortality rate prediction are shown in the Fig-
ure 2(b), and follow similar pattern as results for disease ad-
mission rate prediction. In the following several plots pre-
sented at Figure 4, we show predictions using the extended
GCRF with their confidence intervals for the top six killing
diseases in California for the period of 2003–2011. In all



experiments the uncertainty of the model rightly reflected
the noisiness of the real time signal, which is illustrating
the power of the extended GCRF model to properly model
uncertainty. Additionally, in all experiments we found that
there was no uncertainty propagation unless the model starts
making errors in the prediction and the distribution of the
inputs changes, in which case uncertainty of the model in-
creases properly.

1 Septicemia 2 Respiratory
Failure

3 Acute Cereb.
Disease

4 Pneumonia 5 Acute Myocar.
Infraction

6 Congestive Hearth
Failure

Figure 4: [y–axis]: Mortality rate predictions (red lines) and un-
certainty estimates (gray area) by the extended GCRF for six of
the most frequent diseases causing death in California for up to 48
months (4 years) ahead [x–axis]. True mortality is shown as orange
lines.

Experiments on precipitation network
Precipitation models were trained on 48 months of data
and tested on the following 96 months. As inputs, models
were learned using 12 previous values of precipitation vari-
ables for each station in the region. Prediction for 96 months
ahead is done such that lagged predictions of the previous 12
months are used as input attributes of the models and predic-
tion is done iteratively for those 96 snapshots of the network.

Figure 5: MSE of one (blue) and
multiple (red) 96 months ahead
predictions of precipitation on all
stations by 3 methods.

Accuracy results
obtained by three
models for im-
mediate and for
long-term (96 steps
ahead) predictions
are shown in Fig-
ure 5. Again the
extended GCRF
model provided the
best accuracy of the
used uncertainty
propagation models
in both one–step–
ahead and multiple–steps–ahead prediction. The predictive
accuracy results clearly demonstrate that the structured
GCRF model with linear predictor outperforms both linear
ILR and nonlinear IGP models, which were previously
successfully applied on the climate domain (Drignei 2009;
Sivakumar and Berndtsson 2010), on both single and
multiple–steps–ahead prediction.

The uncertainty propagation when predicting multiple
steps ahead is demonstrated in Figure 6, on the previously
described setup. Plots show 96 months of prediction for the
GCRF model in Figure 6(a) and results are compared to
those of the Gaussian Processes regression in Figure 6(b).
The plot reflects that the GCRF can offer certain predictions

(a) GCRF

(b) IGP

Figure 6: [y-axis]: Precipitation predictions (red lines) and un-
certainty estimates (gray area) by GCRF and IGP iterative models
for up to 96 months (8 years) ahead [x–axis]. True precipitation is
shown as orange lines.

up to about 30 months ahead, after which uncertainty is ac-
cumulated on the displayed station of the network. GCRF
also accurately highlights areas with larger error across the
entire predictive horizon. On the other hand, IGP in Fig-
ure 6(b) shows virtually no uncertainty propagation due to
the smoothness of the prediction, even though the model is
making errors. After a relatively small number of steps, pre-
dictions by the IGP model have converged and as lagged
inputs did not change, there was no change in input distribu-
tion. Thus, there was no uncertainty propagation as the IGP
model has fully propagated after only a few steps.

Conclusion
In this study we developed the iterative uncertainty propa-
gation method for the GCRF model that allows controlled
multiple-steps-ahead prediction with modeling uncertain in-
puts, as well as graph structure learning. The experiments
were conducted on real-world networks from medical and
climate domains for the long-term predictions, where the
proposed model outperformed baselines in terms of both ac-
curacy and uncertainty propagation. The proposed method is
also readily applicable to other long-term structured regres-
sion models with Gaussian canonical form and for applica-
tions where correlation among outputs carries information.
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