Reference Exercise Problems: Text Book, 9.7 Exercises.

Homework problems

Problem 1 The joint probabilities P(X=a,Y=b) of discrete random variables X and Y are given in the following table (which is based on the magical square in Albrecht Durer's engraving Melencolia I in Figure 1). Determine the marginal probability distributions of X and Y, i.e., determine the probabilities P(X=a) and P(Y=b) for a,b=1,2,3,4.

Figure 1: Albrecht Durer's Melencolia I. Albrecht Durer (German, 1471-1528) Melencolia I, 1514. Engraving. Bequest of William P. Chapman, Jr., Class of 1895. Courtesy of the Herbert F. Johnson Museum of Art, Cornell University.

	a			
b	1	2	3	4
1	13/136	2/136	3/136	16/136
2	9/136	6/136	7/136	12/136
3	5/136	10/136	11/136	8/136
4	1/136	15/136	14/136	4/136

Problem 2 Let X and Y be two random variables, with joint distribution the Melencolia distribution, given by the table in Problem 1. What is

- a. P(X = Y)?
- b. P(X + Y = 5)?
- c. $P(1 < X \le 3, 1 < Y \le 3)$?
- d. $P((X,Y) \in \{1,4\} \times \{1,4\})$?

Problem 3 Let X and Y be two independent $Ber(\frac{1}{2})$ random variables. Define random variables U and V by:

$$U = (X + Y)^2 + 1$$
 and $V = |X - Y|$.

- a. Determine the joint and marginal probability distributions of U and V.
- b. Find out whether U and V are dependent or independent.

Problem 4 To investigate the relation between hair color and eye color, the hair color and eye color of 5046 persons was recorded. The data are given in the following table:

	Hair color		
Eye color	Fair/red	Medium	Dark/black
Light	1123	495	845
Dark	2500	78	5

Source: B. Everitt and G. Dunn. Applied multivariate data analysis. Second edition Hodder Arnold, 2001; Table 4.12. Reproduced by permission of Hodder & Stoughton.

Eye color is encoded by the values 1 (Light) and 2 (Dark), and hair color by 1 (Fair/red), 2 (Medium), and 3 (Dark/black). By dividing the numbers in the table by 5046, the table is turned into a joint probability distribution for random variables X (hair color) taking values 1 to 3 and Y (eye color) taking values 1 and 2.

- a. Determine the joint and marginal probability distributions of X and Y.
- b. Find out whether X and Y are dependent or independent.

Problem 5 Let X and Y be independent random variables with probability distributions given by $P(X=0) = P(X=1) = \frac{1}{2}$ and $P(Y=0) = P(Y=2) = \frac{1}{2}$.

- a. Compute the distribution of $Z = (X Y)^2$.
- b. Let \overline{Y} and \overline{Z} be independent random variables, where \overline{Y} has the same distribution as Y, and \overline{Z} the same distribution as Z. Compute the distribution of $\overline{X} = \overline{Z} \overline{Y}$.