Conditional probability and independence

- Define two events A and B.

Conditional probability

$$
\begin{gather*}
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A) \tag{1}\\
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { or } P(B \mid A)=\frac{P(B \cap A)}{P(A)}
\end{gather*}
$$

The law of total probability

- Suppose $B_{1}, B_{2}, \ldots, B_{N}$ are disjoint events and that $B_{1} \cup B_{2} \cup \ldots \cup B_{N}=\Omega$

$$
\begin{equation*}
P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\ldots+P\left(A \mid B_{N}\right) P\left(B_{N}\right) \tag{2}
\end{equation*}
$$

Bayes' rule

$$
\begin{equation*}
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\ldots+P\left(A \mid B_{N}\right) P\left(B_{N}\right)} \tag{3}
\end{equation*}
$$

Independence
$P(A \mid B)=P(A)$ and $P(B \mid A)=P(B) \quad$ and $P(B \cap A)=P(B) P(A)$

